SKM 2023 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
BP: Fachverband Biologische Physik
BP 24: Active Matter IV (joint session DY/BP/CPP)
BP 24.11: Talk
Thursday, March 30, 2023, 12:30–12:45, ZEU 160
Self-organization of model catalytic cycles — •Vincent Ouazan-Reboul1, Jaime Agudo-Canalejo1, and Ramin Golestanian1,2 — 1Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany — 2Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU, Oxford, UK
We study analytically and numerically a model metabolic cycle composed of an arbitrary number of species of catalytically active particles. Each species converts a substrate into a product, the latter being used as the substrate by the next species in the cycle. Through a combination of catalytic activity and chemotactic mobility, the catalytic particles develop effective interactions with particles belonging to neighbouring species in the cycle. These interactions, being fully out-of-equilibrium, show some unusual features, in particular being non-reciprocal. We find that such model metabolic cycles are able to self-organize through a macroscopic instability, with a strong dependence on the characteristics of the cycle. For instance, cycles containing an even number of species are able to minimize repulsion between their component particles by aggregating all even-numbered species in one cluster, and all odd-numbered species in another. Such a grouping is not possible if the cycle contains an odd number of species, which can lead to oscillatory steady states in the case of chasing interactions.