SKM 2023 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
CPP: Fachverband Chemische Physik und Polymerphysik
CPP 30: Biopolymers and Biomaterials I (joint session BP/CPP)
CPP 30.12: Talk
Wednesday, March 29, 2023, 12:45–13:00, TOE 317
Partition complex structure can arise from sliding and bridging of ParB dimers — •Lara Connolley1, Lucas Schnabel2, Martin Thanbichler2, and Sean Murray1 — 1Max Planck Institute for Terrestrial Microbiology, Marburg, Germany — 2University of Marburg, Marburg, Germany
Chromosome segregation is vital for cell replication and in many bacteria is controlled by the ParABS system. A key part of this machinery is the association of ParB proteins to the parS-containing centromeric region to form the partition complex. Despite much work, the formation and structure of this nucleoprotein complex has remained unclear. It was recently discovered that CTP binding allows ParB dimers to entrap and slide along the DNA, as well as leading to more efficient condensation through ParB-mediated DNA bridging. Here, we use semi-flexible polymer simulations to show how these properties of sliding and bridging can explain partition complex formation. We find that transient ParB bridges can organise the DNA into either a globular state or into hairpins and helical structures, depending on the bridge lifetime. Upon coupling with stochastic sliding simulations to form a unified sliding and bridging model, we find that short-lived ParB bridges do not hinder ParB sliding and the model can reproduce both the ParB binding profile and the condensation of the nucleoprotein complex. Overall, our model clarifies the mechanism of partition complex formation and predicts its fine structure.