DPG Phi
Verhandlungen
Verhandlungen
DPG

SKM 2023 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

CPP: Fachverband Chemische Physik und Polymerphysik

CPP 35: Poster Session II

CPP 35.16: Poster

Mittwoch, 29. März 2023, 11:00–13:00, P1

Less is more: tiny amounts of insoluble multi-functional microporous additive plays a big role in lithium secondary batteries — •Ruoxuan Qi1, Peter Müller-Buschbaum1, 2, and Ya-Jun Cheng31TUM School of Natural Sciences, Chair for Functional Materials, Garching, Germany — 2MLZ, TUM, Garching, Germany — 3NIMTE, CAS, Zhejiang Province, P. R. China

Binders play an important role in multi-component electrodes for rechargeable batteries, which suffer from poor electronic and ionic conductivity. Binder-free electrodes provide another way to resolve problems, where sophisticated structure construction is required. A new concept of electrode processing alternative to binder-containing and binder-free electrodes was established. A multi-functional PIM-1 (a polymer with intrinsic microporosity) additive was used instead of PVDF to form mechanically processable Li secondary battery cathodes. Due to its unique nanoporous structure built by the spiro-containing rigid aromatic polymer chain, only a tiny amount of PIM-1 in the LiNi0.8Co0.1Mn0.1O2 cathode is needed to retain good performance, far below the typical composition for PVDF. Homogeneous dispersion of carbon black is achieved by PIM-1, which stabilizes the electrode and increases the electronic conductivity. Different from PVDF, mechanical buffering by stiff PIM-1 yields crack-free electrodes after cycles. Moreover, an inorganic rich cathode-electrolyte interface layer is formed via a desolvation process promoted by PIM-1, because of its strong binding ability with lithium ions, which is beneficial for cyclic stability and rate capability.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2023 > SKM