DPG Phi
Verhandlungen
Verhandlungen
DPG

SKM 2023 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

CPP: Fachverband Chemische Physik und Polymerphysik

CPP 48: Data Driven Materials Science: Big Data and Work Flows – Microstructure-Property-Relationships (joint session MM/CPP)

Thursday, March 30, 2023, 10:15–13:15, SCH A 251

10:15 CPP 48.1 Orisodata: A methodology for grain segementation in atomistic simulations using orientation based iterative self-organizing data analysis — •Arun Prakash
10:30 CPP 48.2 Comparison of atomic environment descriptors with domain knowledge of the interatomic bond — •Mariano Forti, Ralf Drautz, and Thomas Hammerschmidt
10:45 CPP 48.3 A Machine-Learning Framework to Identify Equivalent Atoms at Real Crystalline Surfaces — •King Chun Lai, Sebastian Matera, Christoph Scheurer, and Karsten Reuter
11:00 CPP 48.4 Identifying ordered domains in atom probe tomography using machine learning — •Alaukik Saxena, Navyanth Kusampudi, Shyam Katnagallu, Baptiste Gault, Dierk Raabe, and Christoph Freysoldt
11:15 CPP 48.5 Atomic cluster expansion: training a transferable water interatomic potential from the local atomic environments of ice — •Eslam Ibrahim, Yury Lysogorskiy, and Ralf Drautz
  11:30 15 min. break
11:45 CPP 48.6 Enhancing molecular dynamics simulations of water in comparison to neutron scattering data with algorithms — •Veronika Reich, Luis Carlos Pardo, Martin Müller, and Sebastian Busch
12:00 CPP 48.7 Stress and Heat Flux via Automatic Differentiation — •Marcel F. Langer, Florian Knoop, J. Thorben Frank, Christian Carbogno, Matthias Scheffler, and Matthias Rupp
12:15 CPP 48.8 Accurate thermodynamic properties of bcc refractories through Direct Upsamling — •Axel Forslund, Jong Hyun Jung, Prashanth Srinivasan, and Blazej Grabowski
12:30 CPP 48.9 Efficient workflow for treating thermal and zero-point contributions to the formation enthalpies of ionic materials — •Rico Friedrich, Marco Esters, Corey Oses, Stuart Ki, Maxwell J. Brenner, David Hicks, Michael J. Mehl, Cormac Toher, and Stefano Curtarolo
12:45 CPP 48.10 Microstructure-Property Linkages for Effective Elasticity Tensors by Deep Learning — •Bernhard Eidel
  13:00 CPP 48.11 The contribution has been withdrawn.
100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2023 > SKM