DPG Phi
Verhandlungen
Verhandlungen
DPG

SKM 2023 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MM: Fachverband Metall- und Materialphysik

MM 36: Data Driven Materials Science: Big Data and Work Flows – Microstructure-Property-Relationships (joint session MM/CPP)

MM 36.2: Vortrag

Donnerstag, 30. März 2023, 10:30–10:45, SCH A 251

Comparison of atomic environment descriptors with domain knowledge of the interatomic bond — •Mariano Forti, Ralf Drautz, and Thomas Hammerschmidt — ICAMS, Ruhr Universität Bochum, Universität Straße 150, 44801 Bochum

The study of the relative stability of multicomponent materials and the search for new materials for high performance applications requires extensive samplings of the composition space. This is a demanding task due to the computational effort that is required for the electronic structure calculations. In this work we propose a machine learning approach with descriptors of the local atomic environment using different chemistry heuristics based on smooth overlap of atomic positions, recursive solutions of tight-binding Hamiltonians and atomic cluster expansions. We demonstrate that these descriptors, which retain different levels of domain knowledge of structural and electronic properties of the chemical compounds, can be used to predict formation energies with high accuracy even with simple regression algorithms. We apply the methodology to complex crystal structures in binary and ternary intermetallic systems.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2023 > SKM