SKM 2023 –
wissenschaftliches Programm
MM 8: Development of Computational Methods: Diverse Topics and Machine Learning
Montag, 27. März 2023, 15:45–17:45, SCH A 251
|
15:45 |
MM 8.1 |
Adaptively Compressed Exchange in LAPW — •Davis Zavickis, Kristians Kacars, Janis Cimurs, and Andris Gulans
|
|
|
|
16:00 |
MM 8.2 |
How much laser power can two-photon 3D printed microoptics withstand? — •Sebastian Klein, Pavel Ruchka, Tobias Steinle, and Harald Giessen
|
|
|
|
16:15 |
MM 8.3 |
Molecular Dynamics Simulation of Selective Laser Melting — Fabio Oelschläger, Azad Gorgis, Dominc Klein, Sarah Müller, and •Johannes Roth
|
|
|
|
16:30 |
MM 8.4 |
Exploring Enhanced Sampling Concepts based on Boltzmann Generators — •David Greten, Karsten Reuter, and Johannes T. Margraf
|
|
|
|
16:45 |
|
15 min. break
|
|
|
|
17:00 |
MM 8.5 |
When does the Tamura model of phonon-isotope scattering break down? — •Nakib Protik and Claudia Draxl
|
|
|
|
17:15 |
MM 8.6 |
Physics-inspired Machine Learning for Predicting Ionization Energies of Electronically Localized Systems — •Ke Chen, Christian Kunkel, Bingqing Cheng, Karsten Reuter, and Johannes T. Margraf
|
|
|
|
17:30 |
MM 8.7 |
Kernel Charge Equilibration: Machine Learned Interatomic Potentials With Full Long-Range Electrostatics — •Martin Vondrak, Johannes T. Margraf, and Karsten Reuter
|
|
|