Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
TT: Fachverband Tiefe Temperaturen
TT 2: Focus Session: Physics Meets ML I – Machine Learning for Complex Quantum Systems (joint session TT/DY)
TT 2.9: Vortrag
Montag, 27. März 2023, 12:45–13:00, HSZ 03
Time-dependent variational principle for quantum and classical dynamics — •Moritz Reh1, Markus Schmitt2, and Martin Gärttner1, 3, 4 — 1Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany — 2Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany — 3Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany — 4Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
The solution of many-body quantum dynamics is a challenging feat due to the curse of dimensionality, hindering the exploration of dynamics beyond a mediocre number of qubits. Neural Networks can variationally approximate the state of interest and therefore present a promising tool as they allow to efficiently represent the quantum state at the expense of truncating the Hilbert space.
We present such a scheme that is aimed at solving dissipative quantum dynamics using a probabilistic framework, i.e. the so-called POVM-formalism and demonstrate it for spin chains of up to 40 spins. We then show that the generality of the approach allows us to translate this formalism directly to the case of partial differential equations in high dimensions, defeating the exponential growth of grid cells when adding dimensions.