SMuK 2023 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
AKPIK: Arbeitskreis Physik, moderne Informationstechnologie und Künstliche Intelligenz
AKPIK 1: Poster
AKPIK 1.3: Poster
Montag, 20. März 2023, 16:00–18:00, HSZ OG2
Amortized Bayesian Inference of GISAXS Data with Normalizing Flows — •Maksim Zhdanov1, Lisa Randolph2, Thomas Kluge1, Motoaki Nakatsutsumi2, Christian Gutt3, Michael Bussmann5, Marina Ganeva4, and Nico Hoffmann1 — 1HZDR, Dresden, Germany — 2European XFEL, Germany — 3University of Siegen, Siegen, Germany — 4Forschungszentrum Jülich, Jülich, Germany — 5CASUS, Görlitz, Germany
Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) is a modern imaging technique used in material research to study nanoscale materials. Reconstruction of the parameters of an imaged object imposes an ill-posed inverse problem that is further complicated when only an in-plane GISAXS signal is available. Traditionally used inference algorithms such as Approximate Bayesian Computation (ABC) rely on computationally expensive scattering simulation software, rendering analysis highly time-consuming. We propose a simulation-based framework that combines variational auto-encoders and normalizing flows to estimate the posterior distribution of object parameters given its GISAXS data. We apply the inference pipeline to experimental data and demonstrate that our method reduces the inference cost by orders of magnitude while producing consistent results with ABC.