SMuK 2023 –
wissenschaftliches Programm
T 63: ML Methods III
Mittwoch, 22. März 2023, 15:50–17:20, HSZ/0405
|
15:50 |
T 63.1 |
Automated Hyperparameter Optimization of Neural Networks for ATLAS analyses — •Erik Bachmann
|
|
|
|
16:05 |
T 63.2 |
Optimising inference with binning — Phillip Keicher, Marcel Rieger, Peter Schleper, and •Jan Voss
|
|
|
|
16:20 |
T 63.3 |
Uncertainty aware training — Markus Klute, •Artur Monsch, Günter Quast, Lars Sowa, and Roger Wolf
|
|
|
|
16:35 |
T 63.4 |
Interpolating Antenna Calibration Data from Sparse Measurements with Information Field Theory — •Maximilian Straub, Martin Erdmann, and Alex Reuzki for the Pierre Auger collaboration
|
|
|
|
16:50 |
T 63.5 |
Tau neutrino identification with Graph Neural Networks in KM3NeT/ORCA — •Lukas Hennig for the ANTARES-KM3NET-ERLANGEN collaboration
|
|
|
|
17:05 |
T 63.6 |
Negative event weights in Machine Learning and search for heavy Higgs bosons in top quark pair events at CMS — •Jörn Bach, Christian Schwanenberger, Peer Stelldinger, and Alexander Grohsjean
|
|
|