SMuK 2023 –
scientific programme
T 9: DAQ NN/ML – HW
Monday, March 20, 2023, 16:30–18:00, HSZ/0301
|
16:30 |
T 9.1 |
Implementation of an improved Neural Network for identification of hadronically decaying τ leptons in the ATLAS trigger system for the LHC Run 3 — •Naman Kumar Bhalla, Ö. Oğul Öncel, and Markus Schumacher
|
|
|
|
16:45 |
T 9.2 |
Machine learning based triggers for VBF H → inv at the Level-1 trigger system of CMS — •Shahin Sepanlou, Johannes Haller, Gregor Kasieczka, Finn Labe, Artur Lobanov, and Matthias Schröder
|
|
|
|
17:00 |
T 9.3 |
FPGA-based fast Machine Learning Triggers for Neutrino Telescopes — •Francesca Capel, Christian Haack, Lukas Heinrich, and Christian Spannfellner
|
|
|
|
17:15 |
T 9.4 |
The MDT Trigger Processor for the ATLAS HL-LHC Upgrade of the Level-0 Muon Trigger — •Davide Cieri, Markus Fras, Oliver Kortner, and Sandra Kortner
|
|
|
|
17:30 |
T 9.5 |
The ATLAS Forward Feature Extractor for the HL-LHC — •Adrian Alvarez Fernandez, Stefan Tapprogge, Ulrich Schaefer, Bruno Bauss, Julian Blumenthal, Marcel Weirich, and Dennis Layh
|
|
|
|
17:45 |
T 9.6 |
High-Speed Link Tests for the fFEX L1Trigger Module — •Dennis Layh, Stefan Tapprogge, Ulrich Schäfer, and Bruno Bauss
|
|
|