DPG Phi
Verhandlungen
Verhandlungen
DPG

Berlin 2024 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

BP: Fachverband Biologische Physik

BP 13: Statistical Physics of Biological Systems I (joint session DY/BP)

BP 13.9: Vortrag

Dienstag, 19. März 2024, 12:00–12:15, BH-N 334

Low-dimensional stochastic dynamics of finite-size, spiking-neuron populations via eigenmode expansion — •Tilo Schwalger1,2 and Bastian Pietras31Technical University Berlin, 10623 Berlin, Germany — 2Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany — 3Universitat Pompeu Fabra, Barcelona, Spain

Low-dimensional neural population models in the form of nonlinear Langevin equations provide an effective description of the collective stochastic dynamics of neural networks in the brain. However, existing population models are largely heuristic without a clear link to the underlying neuronal and synaptic mechanisms. Here, we derive a system of Langevin equations at the mesoscopic scale from a microscopic model of a finite-size, fully-connected network of integrate-and-fire neurons with escape noise. The theory is based on a stochastic integral equation for the mesoscopic dynamics of the neural network (Schwalger et al. PloS Comput Biol. 2017) and an eigenmode expansion of the corresponding refractory-density equation (Pietras at al., Phys. Rev. E 2020). Truncating the hierarchy of coupled spectral modes after the first M modes yields a 2M-dimensional Langevin equation, permitting a systematic model reduction. Retaining only the dominant spectral mode, M=1, already captures well oscillatory transients and finite-size fluctuations when compared to microscopic simulations. Our bottom-up theory thus connects biologically plausible spiking neural networks to the efficient firing-rate models often used in applcations.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2024 > Berlin