Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
CPP: Fachverband Chemische Physik und Polymerphysik
CPP 39: Focus Session: Ultrafast Processes in Organic Semiconductors and Perovskites I (joint session O/CPP)
CPP 39.7: Vortrag
Donnerstag, 21. März 2024, 12:30–12:45, MA 004
Disentangling the multiorbital contributions of excitons by photoemission exciton tomography — •G. S. Matthijs Jansen1, Wiebke Bennecke1, Andreas Windischbacher2, Ralf Hemm3, David Schmitt1, Jan Philipp Bange1, Christian Kern2, Daniel Steil1, Sabine Steil1, Marcel Reutzel1, Martin Aeschlimann3, Peter Puschnig2, Benjamin Stadtmüller3,4, and Stefan Mathias1 — 1I. Physikalisches Institut, Georg-August-Universität Göttingen — 2Institute of Physics, University of Graz — 3Department of Physics and Research Center OPTIMAS, University of Kaiserslautern — 4Institute of Physics, Johannes Gutenberg-University Mainz
The opto-electronic response of organic semiconductors is well-known to be dominated by excitons, i.e. quasiparticles that consist of bound electron-hole pairs. As excitons are realizations of a correlated many-particle wave function, experimental and theoretical methods must probe and characterize the the full electron-hole wavefunction, rather than just the single-particle orbitals. Recently, we have shown that time-resolved photoemission momentum microscopy can probe the entangled wavefunction and thereby unravel the exciton’s multiorbital electron and hole contributions [1]. We demonstrate this for the prototypical organic semiconductor buckminsterfullerene (C60) and achieve unprecedented access to key properties of the exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.
[1] W. Bennecke et al., arXiv preprint arXiv:2303.13904 (2023)
Keywords: Photoemission orbital tomography; Excitons; Momentum microscopy; Femtosecond dynamics