Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 24: Focus Session: New Trends in Nonequilibrium Physics – Conservation Laws and Nonreciprocal Interactions I

DY 24.3: Vortrag

Mittwoch, 20. März 2024, 10:15–10:30, BH-N 243

Maxwell construction for a nonreciprocal Cahn-Hilliard model — •Daniel Greve1, Tobias Frohoff-Hülsmann1, and Uwe Thiele1,21Universität Münster — 2Center for Nonlinear Science (CeNoS), Universität Münster

Two important models for active, anti-dissipative phenomena are the nonreciprocal two-field Cahn-Hilliard (NRCH) model [1, 2] and active model B+. The latter is a one-field model describing motility-induced phase-separation (MIPS), for which Solon et al. have analyzed phase coexistence through the derivation of a Maxwell construction in terms of a "generalized thermodynamics" [3]. Using a generalised unifying formalism, we provide phase diagrams for a NRCH model. In contrast to active model B+, where only a stationary large-scale instability occurs, the NRCH model exhibits a rich phenomenology, that includes large- and small-scale stationary as well as large-scale oscillatory instabilities [1, 2, 4]. This leads to the occurrence of a crystal-like phase whose coexistence with liquid-like phases we discuss. In passing, we also show how time-periodic behaviour may coexist with stationary one. Finally, we indicate that the relation of the obtained phase diagrams and the behaviour of corresponding finite-size systems resembles the one for passive systems.

[1] Z. H. You et al., Proc. Natl. Acad. Sci. U. S. A. 117, 19767 (2020).

[2] S. Saha et al., Phys. Rev. X 10, 041009 (2020).

[3] A. P. Solon et al., Phys. Rev. E 97, 020602 (2018).

[4] T. Frohoff-Hülsmann et al., Phys. Rev. E 103, 042602 (2021).

Keywords: Maxwell construction; nonreciprocal interaction; Cahn-Hilliard model; pattern formation; phase coexistence

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2024 > Berlin