Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 34: Poster: Machine Learning, Data Science, and Reservoir Computing

Mittwoch, 20. März 2024, 15:00–18:00, Poster C

15:00 DY 34.1 A First Approach to Dynamically Solving Quadratic Unconstrained Optimization Problems with Memristive Oscillator Networks — •Bakr Al Beattie and Karlheinz Ochs
15:00 DY 34.2 Optical Ising model simulations with caesium vapor cells — •Kilian Junicke, Elizabeth Robertson, Mingwei Yang, Inna Kwiatkowski, and Janik Wolters
15:00 DY 34.3 Exploring neural criticality through the structure of input-induced attractors in random neural networks under external perturbations — •Hiromichi Suetani and Ulrich Parlitz
15:00 DY 34.4 Physical interpretation of learning dynamics in neural networks — •Yannick Mühlhäuser, Max Weinmann, and Miriam Klopotek
15:00 DY 34.5 Understanding Neural Network Models for Phase Recognition — •Shashank Kallappara, Janett Prehl, and Martin Weigel
15:00 DY 34.6 Sand Grain Generation through Deep Learning and Lower Dimensional Representations — •Lira Yelemessova and Matthias Schröter
15:00 DY 34.7 Squeezing Sand Grains through a Bottleneck: Can Deep Learning Find a Minimal Description for Granular Particles? — •Azhar Akhmetova and Matthias Schröter
15:00 DY 34.8 Mutual information estimation in the learning process of neural networks — •Lea Melina Faber, Ibrahim Talha Ersoy, and Karoline Wiesner
15:00 DY 34.9 Cumulative entropy as a bridge between statistical physics and statistical machine learning — •Hans Reimann and Karoline Wiesner
15:00 DY 34.10 Phase Transitions and Information Flow in Deep Neural Networks — •Ibrahim Talha Ersoy and Karoline Wiesner
15:00 DY 34.11 Ab-initio-based interatomic potential for laser-excited Bismuth — •Jimiben Patel, Bernd Bauerhenne, and Martin Garcia
15:00 DY 34.12 Long-Range Electrostatic Descriptors for Machine Learning Force Fields — •Carolin Faller, Bernhard Schmiedmayer, and Georg Kresse
15:00 DY 34.13 Feedback Controlled Microscopy Using Machine Learning — •M Asif Hasan and Frank Cichos
  15:00 DY 34.14 The contribution has been withdrawn.
  15:00 DY 34.15 The contribution has been withdrawn.
15:00 DY 34.16 Bridging the Gap: From EIS to Real-World Battery Performance with Stochastic Pulse Design — •Limei Jin, Franz Bereck, Josef Granwehr, Rüdiger-A. Eichel, Karsten Reuter, and Christoph Scheurer
15:00 DY 34.17 Balancing short- and long-range interactions in Machine Learning Force Fields — •Tobias Henkes, Igor Poltavsky, and Alexandre Tkatchenko
100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2024 > Berlin