Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 47: Quantum Chaos and Coherent Dynamics (joint session DY/TT)
DY 47.5: Vortrag
Donnerstag, 21. März 2024, 16:00–16:15, A 151
Chaotic escape dynamics in the vicinity of hyperbolic fixed points — •Alexander Hempel, Jonas Stöber, and Arnd Bäcker — TU Dresden, Institute of Theoretical Physics, Dresden, Germany
For an ensemble of orbits started in the vicinity of a hyperbolic fixed point in the area-preserving standard map, we find a slow, non-exponential decay of the survival probability. We show that this is governed by the stable and unstable manifolds which form a partial barrier enclosing a resonance zone. The re-entrance of orbits into the resonance zone and the statistics of transit times leads to a simple model, which explains the initial decay of the survival probability. Furthermore we briefly discuss quantum mechanical consequences.
Keywords: chaotic escape; partial barriers; homoclinic tangle; lobe dynamics