Berlin 2024 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
HL: Fachverband Halbleiterphysik
HL 1: Nitrides: Preparation and characterization I
HL 1.5: Vortrag
Montag, 18. März 2024, 10:30–10:45, EW 015
Bandgap Engineering in Cubic Nitrides: a Theoretical Study — •Jan M. Waack1,2, Markus Kremer1,2, Nils Andre Schäfer1,2, Michael Czerner1,2, and Christian Heiliger1,2 — 1Institut für theoretische Physik, Justus-Liebig-Universität Gießen, Germany — 2Center for Materials Research (LaMa), Justus-Liebig-Universität Gießen, Germany
For new applications like integrated RGB LEDs, a precise bandgap engineering over the full visible spectrum is desired. This can be achieved by alloying a narrow bandgap material such as indium nitride (InN) or scandium nitride (ScN) with a wide bandgap semiconductor such as gallium nitride (GaN) or aluminum nitride (AlN).
These material systems like (Al,Sc)N or (In,Ga)N are random alloys that require specific techniques such as the coherent potential approximation (CPA)[1] and special quasi-random structures (SQS)[2] to ensure accurate calculations. To properly predict the fundamental electronic band gap, we use the low computational cost LDA-1/2 method [3]. In this study, we present our results on structural and electronic properties such as stability, lattice parameter, band gap and phonon modes.
[1] C. Franz, M. Czerner, and C. Heiliger, Phys. Rev. B 88, 94421 (2013). https://doi.org/10.1103/PhysRevB.88.094421
[2] A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65, 353 (1990). https://doi.org/10.1103/PhysRevLett.65.353
[3] L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B 78, 125116 (2008). https://doi.org/10.1103/PhysRevB.78.125116
Keywords: DFT; (Sc,Al)N; (In,Ga)N; bandgap; CPA