Berlin 2024 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
HL: Fachverband Halbleiterphysik
HL 27: Quantum Dots and Wires: Optics II
HL 27.6: Talk
Wednesday, March 20, 2024, 11:00–11:15, EW 202
Sending polarization-entangled photon pairs from semiconductor quantum dots through telecommunication fiber networks — Stefan Kazmaier1, Tim Strobel1, Tobias Bauer2, Marlon Schäfer2, Ankita Choudhary3, Nand Lal Sharma3, Raphael Joos1, Cornelius Nawrath1, Weijie Nie3, Ghata Bhayani3, Andre Bisquerra1, Caspar Hopfmann3, Simone L. Portalupi1, Christoph Becher2, Peter Michler1, and •Ilenia Neureuther1 — 1Institut für Halbleiteroptik und Funktionelle Grenzflächen, Center for Integrated Science and Technology (IQST) and SCoPE, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany — 2Fachrichtung Physik, Universität des Saarlandes, Campus E2.6, 66123 Saarbrücken, Germany — 3Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
Enabling fiber-based distribution of entangled single photons is crucial for advancing quantum repeater-based quantum communication. Semiconductor quantum dots (QDs) offer on-demand polarization-entangled photon pairs, but their near-infrared emission hinders telecommunication network compatibility. Here, compatibility is achieved by employing quantum frequency conversion (QFC). We show the conservation of polarization entanglement after QFC of the biexciton emission, making it compatible to telecommunication networks. This is utilized to prove high entanglement fidelity after propagation through a 35 km urban fiber network. Also, entanglement conservation is cofirmed after back conversion in a second QFC to 780 nm preparing an interface for a Rb-based quantum memory.
Keywords: Semiconductor quantum dots; Polarization entangled photon pairs; Quantum frequency conversion; Telecommunication fiber network