DPG Phi
Verhandlungen
Verhandlungen
DPG

Berlin 2024 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

HL: Fachverband Halbleiterphysik

HL 40: 2D Materials and Heterostructures: Magnetic Properties

HL 40.7: Invited Talk

Thursday, March 21, 2024, 11:15–11:45, EW 201

Exciton transport in van der Waals antiferromagnet CrSBr — •Florian Dirnberger1, Sophia Terres1, Akashdeep Kamra2, Mikhail M. Glazov3, and Alexey Chernikov11Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, Germany — 2Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain — 3Saint Petersburg, Russia

The recent discovery of magnetic excitons - a rare type of optical excitation that emerges from spin-polarized electronic states in magnetic materials - raises important questions about elemental interactions between excitons, magnons, and light. Particularly the prototypical layered antiferromagnetic semiconductor CrSBr and its strongly bound excitons with large oscillator strength offer exceptional opportunities in this regard. In this talk, I will present the results of our study of the spatial transport of excitons in CrSBr with particular focus on the specific role of crystal anisotropy, magnons and magnetic order. Our experiments demonstrate highly non-linear exciton transport with unusual temperature dependence that culminates in substantially enhanced exciton propagation at the antiferromagnet-to-paramagnet phase transition. Observations of anomalous and effectively negative transport further highlight the profound coupling of excitonic, vibronic, and magnetic degrees of freedom in CrSBr.

Keywords: magnetic van der Waals materials; 2D magnets; magnetic exciton; diffusion; exciton transport

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2024 > Berlin