Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
MA: Fachverband Magnetismus
MA 5: Spin Structures and Magnetic Phase Transitions I
MA 5.3: Vortrag
Montag, 18. März 2024, 10:00–10:15, EB 202
Generalization of Lieb's Theorem to a Class of Non-Bipartite Lattice Structures — •Fabio Pablo Miguel Méndez Córdoba1,2,3, Joseph Tindall4, Dieter Jaksch2,5, and Frank Schlawin2,3,6 — 1Departamento de Física, Universidad de Los Andes, A.A. 4976, Bogotá, Colombia — 2Universität Hamburg, Luruper Chaussee 149, Gebäude 69, D-22761 Hamburg, Germany — 3The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg D-22761, Germany — 4Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010 — 5Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK — 6Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
Lieb's theorem is of fundamental importance for our understanding of correlated magnetic systems. It predicts the ground state magnetization and magnetic order for interacting itinerant electrons by establishing the connection between the magnetic properties of the Hubbard and Heisenberg models. However, Lieb's theorem is valid only for bipartite lattices. In this work, we extend the theorem to a class of non-bipartite lattices by reinterpreting the lattice structure as a collection of disconnected bipartite subsystems. This extension allows for accurately predicting the emergent magnetic structure, which the corresponding Heisenberg model misses.
Keywords: Ferrimagnetism; Magnetic order; Lieb's Theorem; Bipartite lattices; Hubbard and Heisenberg models