Berlin 2024 –
scientific programme
MM 64: Liquid and Amorphous Materials IV
Thursday, March 21, 2024, 16:45–18:00, C 243
|
16:45 |
MM 64.1 |
Thermodynamic Assessment and CALPHAD Simulation of the Ni-Pd-S Glass Forming Ternary System — •Maryam Rahimi Chegeni, Wenhao Ma, Sascha Riegler, Amirhossein Ghavimi, Magnus Rohde, Hans Jürgen Seifert, Isabella Gallino, and Ralf Busch
|
|
|
|
17:00 |
MM 64.2 |
Machine learning quantum Monte Carlo: application to water clusters — •Matteo Peria, Michele Casula, and Antonino Marco Saitta
|
|
|
|
17:15 |
MM 64.3 |
Device-scale atomistic modelling of phase-change memory materials using a machine-learned interatomic potential — •Yuxing Zhou, Wei Zhang, En Ma, and Volker L. Deringer
|
|
|
|
17:30 |
MM 64.4 |
Towards in-depth atomistic understanding of polymer-derived silicon oxycarbides using machine-learning potentials — Niklas Leimeroth, •Jochen Rohrer, and Karsten Albe
|
|
|
|
17:45 |
MM 64.5 |
Modelling amorphous forms of complex hybrid-inorganic frameworks — •Thomas C. Nicholas, Daniel F. Thomas du Toit, Andrew L. Goodwin, and Volker L. Deringer
|
|
|