DPG Phi
Verhandlungen
Verhandlungen
DPG

Berlin 2024 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

O: Fachverband Oberflächenphysik

O 32: Poster: Solid-Liquid Interfaces

O 32.3: Poster

Dienstag, 19. März 2024, 18:00–20:00, Poster C

Development of high-dimensional neural network potentials for solid-liquid interfaces — •Daniel Trzewik1,2, Moritz R. Schäfer1,2, Alexander L. Knoll1,2, and Jörg Behler1,21Theoretische Chemie II, Ruhr-Universität Bochum, Germany — 2Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Germany

Solid-liquid interfaces play an essential role for chemical processes involving catalysis, electrochemistry and materials science. Modelling of these interfaces with first-principles methods remains computationally demanding due to the required system size. Machine learning potentials offer an efficient alternative at similar level of accuracy. The utilized high-dimensional neural network potentials (HDNNPs) in this project allow for a detailed investigation of solid-water interfaces. Molecular dynamics simulations reveal the structural arrangement and properties of the interface water as well as the interaction with the surface.

Keywords: Molecular Dynamics; Machine Learning Potentials; Interfaces; Water

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2024 > Berlin