DPG Phi
Verhandlungen
Verhandlungen
DPG

Berlin 2024 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

QI: Fachverband Quanteninformation

QI 3: Quantum Communication

QI 3.10: Talk

Monday, March 18, 2024, 12:00–12:15, HFT-TA 441

Microwave quantum teleportation in a thermal environment — •Wun Kwan Yam1,2, Simon Gandorfer1,2, Florian Fesquet1,2, Kedar E. Honasoge1,2, Maria-Teresa Handschuh1,2, Fabian Kronowetter1,2,3, Achim Marx1, Rudolf Gross1,2,4, and Kirill G. Fedorov1,2,41Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany — 2School of Natural Sciences, Technische Universität München, 85748 Garching, Germany — 3Rohde & Schwarz GmbH Co. KG, 81671 Munich, Germany — 4Munich Center for Quantum Science and Technology, 80799 Munich, Germany

Microwave quantum teleportation enables efficient and unconditionally secure exchange of quantum states. It also paves the way towards distributed quantum computing based on superconducting qubits with natural frequency in the microwave regime. We perform quantum teleportation of microwave coherent states between spatially separated cryostats by exploiting two-mode squeezed states propagating over a cryogenic link between those fridges. We study the influence of the cryolink's temperature on the fidelity of teleported states and experimentally demonstrate robustness of our teleportation protocol. Finally, we analyze ultimate limits of this approach and discuss it in the context of microwave quantum local area networks.

Keywords: continuous-variable; quantum teleportation; microwave; superconducting; cryogenic link

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2024 > Berlin