DPG Phi
Verhandlungen
Verhandlungen
DPG

Berlin 2024 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

QI: Fachverband Quanteninformation

QI 9: Quantum Machine Learning and Classical Simulability

Dienstag, 19. März 2024, 09:30–13:15, HFT-FT 101

09:30 QI 9.1 Hauptvortrag: Does provable absence of barren plateaus imply classical simulability? Or, why we might need to rethink variational quantum computing — •Zoe Holmes
10:00 QI 9.2 Can a neural network fake a Boson Sampler? — •Martina Jung, Martin Gärttner, and Moritz Reh
10:15 QI 9.3 Parametrized Quantum Circuits and their approximation capacities in the context of quantum machine learningAlberto Manzano, •David Dechant, Jordi Tura, and Vedran Dunjko
10:30 QI 9.4 Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms — •Alexander Nietner
10:45 QI 9.5 Information-theoretic generalization bounds for learning from quantum data — •Matthias C. Caro, Tom Gur, Cambyse Rouzé, Daniel Stilck França, and Sathyawageeswar Subramanian
11:00 QI 9.6 Efficient classical surrogate simulation of quantum circuits — •Manuel S. Rudolph, Enrico Fontana, Ross Duncan, Ivan Rungger, Zoë Holmes, Lukasz Cincio, and Cristina Cîrstoiu
  11:15 15 min. break
11:30 QI 9.7 Exponential concentration in quantum kernel methods — •Supanut Thanasilp, Samson Wang, Marco Cerezo, and Zoe Holmes
11:45 QI 9.8 On the expressivity of embedding quantum kernels — •Elies Gil-Fuster, Jens Eisert, and Vedran Dunjko
12:00 QI 9.9 A Multi-Excitation Projective Simulation Learning Agent — •Philip LeMaitre, Marius Krumm, and Hans Briegel
12:15 QI 9.10 On the average-case complexity of learning output distributions of quantum circuitsAlexander Nietner, Marios Ioannou, Ryan Sweke, Richard Kueng, Jens Eisert, •Marcel Hinsche, and Jonas Haferkamp
12:30 QI 9.11 Understanding quantum machine learning also requires rethinking generalization — •Elies Gil-Fuster, Jens Eisert, and Carlos Bravo-Prieto
12:45 QI 9.12 More efficient exchange-only quantum gates via reinforcement learning — •Violeta N. Ivanova-Rohling, Niklas Rohling, and Guido Burkard
13:00 QI 9.13 The Mean King’s Problem as a learning task — •Niklas Rohling
100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2024 > Berlin