TT 36: Superconductivity: Theory I
Mittwoch, 20. März 2024, 09:30–13:00, H 3005
|
09:30 |
TT 36.1 |
Interorbital Cooper pairing at finite energies in Rashba surface states — •Philipp Rüßmann, Masoud Bahari, Stefan Blügel, and Björn Trauzettel
|
|
|
|
09:45 |
TT 36.2 |
The contribution has been withdrawn.
|
|
|
|
10:00 |
TT 36.3 |
Stability of Bogoliubov Fermi Surfaces within BCS Theory — Ankita Bhattacharya and •Carsten Timm
|
|
|
|
10:15 |
TT 36.4 |
Bogoliubov-Fermi Surfaces in 2D heterostructures — •Julia Link and Carsten Timm
|
|
|
|
10:30 |
TT 36.5 |
Thermoelectric Switch From Bogoliubov Fermi Surface in superconducting 3D Topological Insulator Heterostructures — •Phillip Mercebach, Bo Lu, Keiji Yada, Yukio Tanaka, and Pablo Burset
|
|
|
|
10:45 |
TT 36.6 |
Complete zero-energy flat bands of surface states in fully gapped chiral noncentrosymmetric superconductors — •Clara Johanna Lapp, Julia M. Link, and Carsten Timm
|
|
|
|
11:00 |
TT 36.7 |
Exceeding the Chandrasekhar-Clogston limit in flat-band superconductors: A multiband strong-coupling approach — •Kristian Maeland and Asle Sudbø
|
|
|
|
11:15 |
|
15 min. break
|
|
|
|
11:30 |
TT 36.8 |
Theory of superconductivity in thin films under an external electric field — Alessio Zaccone and •Vladimir Fomin
|
|
|
|
11:45 |
TT 36.9 |
Superconductivity due to fluctuating loop currents — Grgur Palle, •Risto Ojajärvi, Rafael M. Fernandez, and Jörg Schmalian
|
|
|
|
12:00 |
TT 36.10 |
Electronic theory for FFLO state in iron-based superconductors: role of spin-orbit coupling and pairing symmetry — •Luka Jibuti and Ilya Eremin
|
|
|
|
12:15 |
TT 36.11 |
Zero-field finite-momentum and field-induced superconductivity in altermagnets — •Debmalya Chakraborty and Annica M. Black-Schaffer
|
|
|
|
12:30 |
TT 36.12 |
Proximity-induced gapless superconductivity in two-dimensional Rashba semiconductor in magnetic field — •Serafim Babkin, Andrew Higginbotham, and Maksym Serbyn
|
|
|
|
12:45 |
TT 36.13 |
Singlet-Triplet Mixing, Topological Superconductivity and Topological Phase Transitions in the Triangular-Lattice Rashba Hubbard model — •Matthew Bunney, Jacob Beyer, Carsten Honerkamp, and Stephan Rachel
|
|
|