Berlin 2024 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
TT: Fachverband Tiefe Temperaturen
TT 72: SrTiO3: A Versatile Material from Bulk Quantum Paraelectric to 2D Superconductor II (joint session TT/KFM/MA/O)
TT 72.8: Vortrag
Donnerstag, 21. März 2024, 17:00–17:15, H 0104
Mobility in SrTiO3 Mediated by Machine Learning Predicted Anharmonic Phonons — •Luigi Ranalli1, Carla Verdi2, and Cesare Franchini1 — 1University of Vienna, Vienna, Austria — 2University of Queensland: Brisbane, Queensland, Australia
The anharmonic corrections to ionic motion play a crucial role in influencing the electron-phonon interaction, a phenomenon typically addressed through harmonic dynamical matrices at the ground state. By combining machine learning methodologies [1] and the stochastic self-consistent harmonic approximation [2], we achieve a precise depiction of the temperature-dependent evolution of phonon frequencies and the onset of ferroelectricity in the quantum paraelectric perovskites SrTiO3 [3] and KTaO3 [4]. In this presentation, anharmonic dynamical matrices are incorporated into the Boltzmann transport equation calculations for SrTiO3 up to 300K using the EPW code [5] and fixing the derivatives of the Kohn-Sham potential computed through density functional perturbation theory [6]. This approach yields a coherent interaction vertex, ensuring that the temperature-dependent ferroelectric soft mode explains and recovers the observed trend in experimental mobility, akin to the behavior observed in KTaO3.
[1] R. Jinnouchi et al., Phys. Rev. Lett. 122 (2019) 225701
[2] L. Monacelli et al., J. Phys.: Condens. Matter 33 (2021) 363001
[3] C. Verdi et al., Phys. Rev. Materials 7 (2023) L030801
[4] L. Ranalli et al., Adv. Quantum Technol. 6 (2023) 2200131
[5] H. Lee et al., 10.1038/s41578-021-00289-w (2023)
[6] J. Zhou et al., Phys. Rev. Research 1 (2019) 033138
Keywords: phonon anharmonicity; electron-phonon coupling; density functional theory; quantum paraelectrics; machine learning