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MM 11.1 Mon 15:45 C 243
Leveraging Multi-Fidelity Data In AI-Driven Sequential
Learning of Materials Properties: Identifying Stable Water-
Splitting Catalysts — ∙Akhil S. Nair, Lucas Foppa, and
Matthias Scheffler — The NOMAD Laboratory at the FHI of
the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-
Universität zu Berlin, Germany
The sequential learning of materials properties can enable a cost-
effective materials discovery by iteratively extending the training data
guided by an AI model [1]. Such an approach balances the exploitation
of the model and the exploration of unvisited regions of the materials
space. However, the efficiency of sequential learning relies on the per-
formance of the AI model and on the quality of the data used to train
the models. In material science, high-quality data is typically scarce.
To address this challenge, we develop a sequential learning framework
which utilizes low-fidelity data to improve the performance of the AI
models for high-fidelity materials properties. In particular, we employ
the symbolic regression based sure-independence screening and sparsi-
fying operator (SISSO) method, which is suitable for small data sets
and can better capture the behaviour of unseen materials compared
to widely used AI methods [2]. Our approach is demonstrated for
the discovery of stable oxide catalysts for water splitting, a process of
significant importance in sustainable hydrogen production. For this,
low and high-fidelity data are obtained from DFT-PBE and DFT-HSE
calculations, respectively.

MM 11.2 Mon 16:00 C 243
From ab-initio to scattering experiments using neuroevolu-
tion potentials — ∙Eric Lindgren1, Adam Jackson2, Zheyong
Fan3, Christian Müller4, Jan Swenson1, Thomas Holm-Rod5,
and Paul Erhart1 — 1Department of Physics, Chalmers University
of Technology, Gothenburg, Sweden — 2Centre for Sustainable Chem-
ical Technologies and Department of Chemistry, University of Bath,
United Kingdom — 3College of Physical Science and Technology, Bo-
hai University, Jinzhou, People’s Republic of China — 4Department
of Chemistry and Chemical Engineering, Chalmers University of Tech-
nology, Gothenburg, Sweden — 5ESS Data Management and Software
Center, Copenhagen, Denmark
Machine-learned interaction potentials have in recent years emerged
as an appealing alternative to traditional methods for obtaining forces
for molecular dynamics simulations, combining the computational ef-
ficiency of semi-empiricial potentials with the accuracy of ab-inito
methods. In particular, Neuroevolution potential (NEP) models, as
implemented in the GPUMD package, are highly accurate and compu-
tationally efficient, enabling large scale MD simulations with system
sizes up to millions of atoms with ab-initio level accuracy. In this work,
we present a workflow for constructing and sampling NEPs using the
‘calorine‘ package, and how the resulting trajectories can be analysed
with the ‘dynasor‘ package to predict observables from scattering ex-
periments. We focus on our recent work on crystalline benzene as
an example system, but the approach is readily extendable to other
systems.

MM 11.3 Mon 16:15 C 243
Multi-Objective Optimization of Subgroups for the Discov-
ery of Exceptional Materials — ∙Lucas Foppa and Matthias
Scheffler — The NOMAD Laboratory at the FHI of the MPG and
IRIS-Adlershof of the HU Berlin, Germany
Artificial intelligence (AI) can accelerate the design of materials by
identifying correlations and complex patterns in data. However, AI
methods commonly attempt to describe the entire, practically infinite
materials space with a single model, whereas different mechanisms typ-
ically govern the materials behaviors in different regions of materials
space. The subgroup-discovery (SGD) approach identifies local rules
describing exceptional subsets of data with respect to a given target of
interest. Thus, SGD can focus on mechanisms leading to exceptional
performance.[1] However, the identification of appropriate SG rules re-
quires a careful consideration of the generality-exceptionality tradeoff.
Here, we analyse the tradeoff between exceptionality and generality of
rules based on a Pareto front of SGD solutions.[2]
[1] B.R. Goldsmith, et al., New. J. Phys. 19, 013031 (2017).
[2] L. Foppa and M. Scheffler, arXiv.2311.10381 (2023).

MM 11.4 Mon 16:30 C 243
From Prediction to Action: Critical Role of Performance
Estimation for Machine-Learning-Driven Materials Discov-
ery — ∙Lucas Foppa1, Mario Boley2, Felix Luong2, Simon
Teshuva2, Daniel Schmidt2, and Matthias Scheffler2 — 1The
NOMAD Laboratory at the FHI of the MPG and IRIS-Adlershof of the
HU Berlin, Germany — 2Department of Data Science and AI, Monash
University, Australia
The development of machine-learning models for materials properties
focuses on improving the average predictive performance of the mod-
els with respect to some training-data distribution. However, a good
performance in average might not translate into an efficient discovery
of materials via model-driven blackbox optimization (e.g., Bayesian).
In these iterative materials-discovery approaches, the training data is
extended based on a model-informed acquisition function whose goal
is to maximize a cumulative reward over iterations, such as the max-
imum property value discovered so far. Crucially, the rewards might
be decoupled from the average predictive performance, as they can be
dictated by the model performance for the few exceptional materials
of interest. Here, we illustrate this problem for the example of bulk-
modulus maximization in perovskites and propose an estimator that
recovers qualitative aspects of the actual rewards and can be computed
using the intial training data.[1]
[1] M. Boley, et al., arXiv:2311.15549 (2023).

15 min. break

MM 11.5 Mon 17:00 C 243
A generic Bayesian Optimization framework for the inverse
design of materials — ∙Zhiyuan Li, Yixuan Zhang, and Hong-
bin Zhang — Institute of Materials Science, TU Darmstadt, 64287
Darmstadt Germany
The traditional approach to develop materials relies on the time- and
resource-costly trial-and-error experiments, as well as phenomenologi-
cal theory with limited predictivity. Despite recent advances in high-
throughput density functional theory calculations and statistical ma-
chine learning techniques, it is still a big challenge to efficiently explore
a vast chemical space with a small number of initial samples to identify
materials with optimized properties.

In this study, we propose and implement a comprehensive inverse
design framework based on Bayesian optimization, integrating feature
engineering, surrogate models, and acquisition functions, aiming to
expedite the process of materials discovery. Focusing on the intrin-
sic physical properties such as formation energy, hardness, band gaps,
and magnetization, it is demonstrated how such a framework can be
applied to recommend optimal compositions in a vast chemical space
exhibiting desired properties.

MM 11.6 Mon 17:15 C 243
Uncertainty quantification by shallow ensemble propagation
— ∙Matthias Kellner and Michele Ceriotti — École Polytech-
nique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Statistical learning algorithms provide a generally-applicable frame-
work to sidestep time-consuming experiments, or accurate physics-
based modeling, but they introduce a further source of error on top
of the intrinsic limitations of the experimental or theoretical setup.
One way to estimate this error is uncertainty estimation which make
application of data-centric approaches more trustworthy. To ensure
that uncertainty quantification is used widely, one should aim for al-
gorithms that are reasonably accurate, but also easy to implement and
apply. In particular, including uncertainty quantification on top of an
existing model should be straightforward, and add minimal computa-
tional overhead. Furthermore, it should be easy to process the outputs
of one or more machine-learning models, propagating uncertainty over
further computational steps. We compare several well-established un-
certainty quantification frameworks against these requirements, and
propose a practical approach, which we dub shallow ensemble prop-
agation, that provides a good compromise between ease of use and
accuracy. We present applications to the field of atomistic machine
learning for chemistry and materials, which provides striking exam-
ples of the importance of using a formulation that allows to propagate
errors without making strong assumptions on the correlations between
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different predictions of the model.

MM 11.7 Mon 17:30 C 243
Extracting physics with feature selection: How much data do
we need and what can we really learn? — Guido Gaggl, Jo-
hannes C. Cartus, and ∙Oliver T. Hofmann — Institute of Solid
State Physics, TU Graz
Feature selection algorithms such as SISSO allow a quick and auto-
mated analysis of data with the aim to find an equation that relates a
target property of a system with properties of its constituent. Ideally,
this equation coincides with the correct underlying physics. Unfor-
tunately, this is often not the case, but even then, analyzing which
constituent properties appear is often used to identify promising fea-
tures. In this work, we analyze how well SISSO performs this task
adverse circumstances. First, we demonstrate that given enough high-
quality data and a sufficiently large feature space, it is indeed able
to recover the correct physical equation. This is also surprisingly ro-
bust when reducing the number of available data points, even when
including random or systematic bias into it. Conversely, adding even
relatively small amount of noise to the data quickly deteriorates the
performance. Finally, we discuss that in situations where two physical
effects are superimposed, SISSO is intrinsically unable to find either,
even when including multiple rungs.

MM 11.8 Mon 17:45 C 243

Adaptive-precision potentials for large-scale atomistic sim-
ulations — ∙David Immel1,2, Ralf Drautz1, and Godehard
Sutmann1,2 — 1ICAMS, Ruhr-Universität Bochum, Bochum, Ger-
many — 2JSC, Forschungszentrum Jülich, Jülich, Germany
Large-scale atomistic simulations rely on interatomic potentials provid-
ing an efficient representation of atomic energies and forces. Modern
machine learning (ML) potentials provide the most precise represen-
tation compared to electronic structure calculations while traditional
potentials provide a less precise, but computationally much faster rep-
resentation and thus allow simulations of larger systems.

We combine a traditional and a ML potential to a multi-resolution
description, leading to an adaptive-precision potential with an opti-
mum of performance and precision in large complex atomistic systems.
The required precision is determined per atom by a local structure
analysis and updated automatically during a simulation. We use Cop-
per as demonstrator material with an embedded atom model (EAM)
as traditional and an atomic cluster expansion (ACE) as ML poten-
tial, but any material and potential combination can be used for an
adaptive-precision potential. The approach is developed for the molec-
ular dynamics simulator LAMMPS and includes a load-balancer to
prevent problems due to the atom dependent force-calculation times,
which makes it suitable for large-scale atomistic simulations.

In this contribution strategies for the creation of an adaptive-
precision potential are discussed. First results from Copper nanoin-
dentations are reported and further improvements are outlined.
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