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Invited Talk QI 9.1 Tue 9:30 HFT-FT 101
Does provable absence of barren plateaus imply classical sim-
ulability? Or, why we might need to rethink variational quan-
tum computing — ∙Zoe Holmes — EPFL, Lausanne, Switzerland
A large amount of effort has recently been put into understanding the
barren plateau phenomenon. Here we face the increasingly loud ele-
phant in the room and ask a question that has been hinted at by many
but not explicitly addressed: Can the structure that allows one to
avoid barren plateaus also be leveraged to efficiently simulate the loss
classically? We present strong evidence that commonly used models
with provable absence of barren plateaus are also in a sense classi-
cally simulable, provided that one can collect some classical data from
quantum devices during an initial data acquisition phase. This fol-
lows from the observation that barren plateaus result from a curse
of dimensionality, and that current approaches for solving them end
up encoding the problem into some small, classically simulable, sub-
spaces. This sheds serious doubt on the non-classicality of the infor-
mation processing capabilities of parametrized quantum circuits for
barren plateau-free landscapes and on the possibility of superpolyno-
mial advantages from running them on quantum hardware. We end by
discussing caveats in our arguments, the role of smart initializations,
and by highlighting new opportunities that our perspective raises.

QI 9.2 Tue 10:00 HFT-FT 101
Can a neural network fake a Boson Sampler? — ∙Martina
Jung1, Martin Gärttner1, and Moritz Reh1,2 — 1Friedrich-
Schiller-Universität, Jena, Deutschland — 2Universität Heidelberg,
Heidelberg, Deutschland
Originally defined to demonstrate quantum supremacy, Boson Sam-
pling and its simulation have become an own field of research. The
simulation of a Boson Sampler is an - per-construction - classically in-
tractable problem due to the computational complexity of its distribu-
tion. A statistics-based approach to learn the probability distribution
of a sampling process faces issues like sparse data and highly correlated
output configurations. These problems are reminiscent of natural lan-
guage processing (NLP) tasks where a neural network is trained to
respond to a query. Indeed, NLP models like a recurrent neural net-
work (RNN) decompose the task by learning to sequentially predict
the next word based on the preceding sequence of words. Transferring
this concept to the bosonic Fock space, we train a RNN to simulate
a Boson Sampler by predicting the conditional probabilities related
to input-output configurations. The model’s ability to extrapolate is
tested on input sequences of lengths beyond the ones seen during the
training.

QI 9.3 Tue 10:15 HFT-FT 101
Parametrized Quantum Circuits and their approximation ca-
pacities in the context of quantum machine learning — Al-
berto Manzano1, ∙David Dechant2,3, Jordi Tura2,3, and Ve-
dran Dunjko2,3,4 — 1Department of Mathematics and CITIC, Uni-
versidade da Coruña, Campus de Elviña s/n, A Coruña, Spain —
2Applied Quantum Algorithms Leiden, The Netherlands — 3Instituut-
Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The
Netherlands — 4LIACS, Universiteit Leiden, P.O. Box 9512, 2300 RA
Leiden, Netherlands
Parametrized quantum circuits (PQC) are used in recent approaches
to quantum machine learning to learn various types of data, with an
underlying expectation that if the PQC is made sufficiently deep, and
the data plentiful, the generalization error will vanish, and the model
will capture the essential features of the distribution. While there ex-
ist results proving the approximability of square-integrable functions
by PQCs under the 𝐿2 distance, the approximation for other function
spaces and under other distances has been less explored. In this work
we show that PQCs can approximate the space of continuous func-
tions, 𝑝-integrable functions and the 𝐻𝑘 Sobolev spaces under specific
distances. Moreover, we develop generalization bounds that connect
different function spaces and distances. These results provide a theo-
retical basis for different applications of PQCs, for example for solving
differential equations. Furthermore, they provide us with new insight
on how to design PQCs and loss functions which better suit the specific
needs of the users.

QI 9.4 Tue 10:30 HFT-FT 101
Unifying (Quantum) Statistical and Parametrized (Quan-
tum) Algorithms — ∙Alexander Nietner — FU-Berlin
Kearns SQ oracle lends a unifying perspective for most classical ma-
chine learning algorithms. This no longer holds in case of quantum
learning and with respect to the SQ or QSQ oracle. In this work
we explore the problem of learning from an evaluation oracle, which
provides an estimate of function values. We introduce an intuitive
framework that yields unconditional lower bounds for learning from
evaluation queries and characterizes the query complexity for learn-
ing linear function classes. The framework is directly applicable to
the QSQ setting and virtually all algorithms based on loss function
optimization.

We first apply this formalism to the QSQ setting studying the learn-
ability of unitary and Clifford quantum circuit states at different depth
regimes and prove exponential separations of learning stabilizer states
from QSQs versus from quantum copy access.

Our second application is to analyze popular QML settings and to
develop an intuitive picture that goes beyond that of barren plateaus.
This enables us to show how the implications of a barren plateau de-
pend on the particular setting, which gives new and valuable insights
into variational algorithms.

QI 9.5 Tue 10:45 HFT-FT 101
Information-theoretic generalization bounds for learning
from quantum data — ∙Matthias C. Caro1,2, Tom Gur3, Cam-
byse Rouzé4,5, Daniel Stilck França6, and Sathyawageeswar
Subramanian3,7 — 1Dahlem Center for Complex Quantum Systems,
FU Berlin — 2IQIM, Caltech — 3Department of Computer Science
and Technology, University of Cambridge — 4Inria, Télécom Paris -
LTCI, Institut Polytechnique de Paris, Palaiseau, France — 5Zentrum
Mathematik, TU München — 6Univ Lyon, ENS Lyon, UCBL, CNRS,
Inria, LIP, F-69342, Lyon Cedex 07, France — 7Department of Com-
puter Science, University of Warwick
Learning tasks play an increasingly prominent role in quantum infor-
mation and computation. However, the many directions of quantum
learning theory have so far evolved separately. We propose a general
mathematical formalism for describing quantum learning by training
on classical-quantum data and then testing how well the learned hy-
pothesis generalizes to new data. In this framework, we prove bounds
on the expected generalization error of a quantum learner in terms of
classical and quantum information-theoretic quantities measuring how
strongly the learner’s hypothesis depends on the specific data seen
during training. To achieve this, we use tools from quantum optimal
transport and quantum concentration inequalities. Our framework en-
compasses and gives intuitively accessible generalization bounds for
a variety of quantum learning scenarios. Thereby, our work lays a
foundation for a unifying quantum information-theoretic perspective
on quantum learning.

QI 9.6 Tue 11:00 HFT-FT 101
Efficient classical surrogate simulation of quantum circuits —
∙Manuel S. Rudolph1,5, Enrico Fontana2,3,4, Ross Duncan3,
Ivan Rungger4, Zoë Holmes1, Lukasz Cincio5, and Cristina
Cîrstoiu3 — 1EPFL, Lausanne, Schweiz — 2University of Strath-
clyde, Glasgow, UK — 3Quantinuum, Cambridge, UK — 4National
Physical Laboratory, Teddington, UK — 5Los Alamos National Lab,
Los Alamos, USA
Performant classical simulation of quantum systems is crucial for
benchmarking quantum algorithms and verifying potential quantum
advantages. Here, we provide two results. First, we prove that there
exists a polynomial-time algorithm for simulating quantum circuits af-
fected by constant local Pauli noise with bounded average error as
the number of qubits or circuit depth increases. This highlights that,
on average, there cannot be an exponential quantum-classical sepa-
ration in observable estimation tasks when the quantum hardware is
affected by such noise. Second, we turn our Theorems into a full-
fledged high-performance simulation algorithm called “LOWESA” for
noisy and noise-free quantum circuits. LOWESA can be understood as
a classical surrogate for expectation landscapes with fast re-evaluation
at different circuit parameters. We show that we can scale our sim-
ulations to the 127-qubit examples presented in Nature 618, 500-505
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(2023), where we produce near-exact expectation values and highlight
the strengths of LOWESA compared to other established simulation
methods.

15 min. break

QI 9.7 Tue 11:30 HFT-FT 101
Exponential concentration in quantum kernel methods —
∙Supanut Thanasilp1, Samson Wang2, Marco Cerezo3, and Zoe
Holmes1 — 1EPFL, Lausanne, Switzerland — 2Imperial college Lon-
don, London, UK — 3Los Alamos National Laboratory, New Mexico,
US
Kernel methods in Quantum Machine Learning have recently gained
significant attention as a candidate for achieving a quantum advantage.
Among attractive properties, when training a kernel-based model one
is guaranteed to find the optimal models parameters due to the con-
vexity of the landscape. However, this is based on the assumption
that the kernel can be efficiently obtained from quantum hardware. In
this work we study the performance of quantum kernel models from
the perspective of the resources needed to accurately estimate kernel
values. We show that, under certain conditions, values of quantum
kernels over different input data can be exponentially concentrated (in
the number of qubits) towards some fixed value. Thus on training
with a polynomial number of measurements, one ends up with a triv-
ial model where the predictions on unseen inputs are independent of
the training data. We identify four sources that can lead to concentra-
tion including expressivity of data embedding, global measurements,
entanglement and noise. For each source, an associated concentration
bound of quantum kernels is analytically derived. Lastly, we show that
when dealing with classical data, training a parametrized data embed-
ding with a kernel alignment method is also susceptible to exponential
concentration.

QI 9.8 Tue 11:45 HFT-FT 101
On the expressivity of embedding quantum kernels —
∙Elies Gil-Fuster1,2, Jens Eisert1,2,3, and Vedran Dunjko4,5

— 1Dahlem Center for Complex Quantum Systems, Freie Universitat
Berlin — 2Fraunhofer Heinrich Hertz Institute, Berlin — 3Helmholtz-
Zentrum Berlin fur Materialien und Energie — 4Applied Quantum
Algorithms, Universiteit Leiden, Netherlands — 5LIACS, Universiteit
Leiden, Netherlands
One of the most natural connections between quantum and classical
machine learning has been established in the context of kernel meth-
ods. Quantum kernels are typically evaluated by explicitly construct-
ing quantum feature states and then taking their inner product, here
called embedding quantum kernels. Since classical kernels are usually
evaluated without using the feature vectors explicitly, we wonder how
expressive embedding quantum kernels are. In this work, we raise the
question: can all quantum kernels be expressed as the inner product
of quantum feature states? Our first result is positive: for any ker-
nel function there always exists a corresponding quantum feature map
and an embedding quantum kernel. In a second part, we formalize the
question of universality of efficient embedding quantum kernels. We
show that efficient embedding quantum kernels are universal within
a broad class of shift invariant kernels. We then extend this result
to a new class of so-called composition kernels, which we show also
contains projected quantum kernels introduced in recent works. We fi-
nally identify the directions towards new, more exotic, and unexplored
quantum kernel families.

QI 9.9 Tue 12:00 HFT-FT 101
A Multi-Excitation Projective Simulation Learning Agent —
∙Philip LeMaitre, Marius Krumm, and Hans Briegel — Univer-
sität Innsbruck, Institut für Theoretische Physik, Innsbruck, Austria
The rapid integration of artificial intelligence (AI) into daily life, driven
by advanced large language models such as ChatGPT, highlights a crit-
ical question in AI research: how can we comprehend an AI’s decision-
making process that leads to specific outcomes? To address this ques-
tion, the field of explainable AI emerges as vital, with the projective
simulation reinforcement learning framework being a notable compo-
nent. An extension of this framework is considered to enable the AI
agent to process multiple variables concurrently, enhancing its ability
to discern complex correlations within its environment. Additionally,
an inductive bias inspired from quantum many-body expansions of the
Hamiltonian is introduced. This bias focuses on smaller clusters of
memory states during decision-making, balancing the increased com-

plexity inherent in the extended model. The enhanced framework is
then applied to two distinct learning scenarios: a simple defence game
featuring deceptive strategies by the attacker, and a more complex sce-
nario mimicking computer diagnostics and maintenance tasks. In both
contexts, the agent successfully learns optimal policies by leveraging
higher-order correlations. Furthermore, a preliminary overview of the
quantum variant of the model is provided, offering a more realistic
model for future explorations in explainable quantum AI.

QI 9.10 Tue 12:15 HFT-FT 101
On the average-case complexity of learning output distri-
butions of quantum circuits — Alexander Nietner1, Mar-
ios Ioannou1, Ryan Sweke1,3, Richard Kueng2, Jens Eisert1,
∙Marcel Hinsche1, and Jonas Haferkamp1,4 — 1FU Berlin —
2JKU Linz — 3IBM Quantum — 4Harvard University
In this work, we show that learning the output distributions of brick-
work random quantum circuits is average-case hard in the statistical
query model, which models most practical algorithms. Our main re-
sults are:

∙ At super logarithmic circuit depth 𝑑 = 𝜔(log(𝑛)), any learning
algorithm requires super polynomially many queries to achieve a
constant probability of success over the randomly drawn instance.

∙ There exists a 𝑑 = 𝑂(𝑛), such that any learning algorithm requires
Ω(2𝑛) queries to achieve a Ω(2−𝑛) probability of success over the
randomly drawn instance.

∙ At infinite circuit depth 𝑑 → ∞, any learning algorithm requires
22

Ω(𝑛)
many queries to achieve a 2−2𝑂(𝑛)

probability of success
over the randomly drawn instance.

Moreover, we confirm a variant of a conjecture by Aaronson and Chen
and show that the output distribution of a brickwork random quantum
circuit is constantly far from any fixed distribution in total variation
distance with probability 1−𝑂(2−𝑛).

QI 9.11 Tue 12:30 HFT-FT 101
Understanding quantum machine learning also requires
rethinking generalization — ∙Elies Gil-Fuster1,2, Jens
Eisert1,2,3, and Carlos Bravo-Prieto1 — 1Dahlem Center for
Complex Quantum Systems, Freie Universitat Berlin — 2Fraunhofer
Heinrich Hertz Institute, Berlin — 3Helmholtz-Zentrum Berlin fur Ma-
terialien und Energie
Quantum machine learning models have shown successful generaliza-
tion performance even when trained with few data. In this work,
through systematic randomization experiments, we show that tradi-
tional approaches to understanding generalization fail to explain the
behavior of such quantum models. Our experiments reveal that state-
of-the-art quantum neural networks accurately fit random states and
random labeling of training data. This ability to memorize random
data defies current notions of small generalization error, problema-
tizing approaches that build on complexity measures such as the VC
dimension, the Rademacher complexity, and all their uniform relatives.
We complement our empirical results with a theoretical construction
showing that quantum neural networks can fit arbitrary labels to quan-
tum states, hinting at their memorization ability. Our results do not
preclude the possibility of good generalization with few training data
but rather rule out any possible guarantees based only on the prop-
erties of the model family. These findings expose a fundamental chal-
lenge in the conventional understanding of generalization in quantum
machine learning and highlight the need for a paradigm shift in the
design of quantum models for machine learning tasks.

QI 9.12 Tue 12:45 HFT-FT 101
More efficient exchange-only quantum gates via reinforce-
ment learning — ∙Violeta N. Ivanova-Rohling1,2,3, Niklas
Rohling1, and Guido Burkard1 — 1Department of Physics, Uni-
versity of Konstanz — 2Zukunftskolleg, University of Konstanz —
3Department of Mathematical Foundations of Computer Sciences, IMI,
Bulgarian Academy of Sciences
There has recently been rapid progress in the research of spin qubits
[1], including the realization of exchange-only qubits [2,3]. Here, we
use reinforcement learning to optimize the efficiency of exchange-based
pulse sequences that encode the universal two-qubit gates CNOT and
CZ with nearest-neighbor interaction for quantum dot arrangements in
a chain and in a 2 by 3 grid. We improve on gate sequences currently
known in the literature. Specifically, with our reinforcement learning
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framework, we manage to find a gate sequence encoding CNOT with a
shorter total time than the Fong-Wandzura sequence [4] which is cur-
rently state of the art. Moreover, the flexibility of our approach makes
it applicable for gate-sequence optimization for a variety of desired
quantum gates and a variety of different connection topologies.

[1] Burkard, Ladd, Pan, Nichol, Petta, Rev. Mod. Phys. 95, 025003
(2023)

[2] DiVincenzo, Bacon, Kempe, Burkard, Whaley, Nature 408, 339
(2000)

[3] Weinstein et al., Nature 615, 817 (2023)
[4] Fong, Wandzura, Quantum Info. Comput. 11, 1003 (2011)

QI 9.13 Tue 13:00 HFT-FT 101
The Mean King’s Problem as a learning task — ∙Niklas
Rohling — Department of Physics, University of Konstanz
The Mean King’s Problem [1-5] is an early example of an advantage
due to the availability of additional quantum resources. This original
version of the problem is a single-shot measurement where Alice has
to determine correctly the outcome of a measurement which was per-

formed previously by the king’s men. The difficulty comes from the
fact that the measurement basis used by the king’s men is revealed only
after Alice has completed her measurement. The striking result is that
Alice can find the correct answer with certainty if she is allowed to en-
tangle the state initially with an additional quantum system. Here, we
formulate the Mean King’s Problem as a learning task where several
copies of the state after the king’s men’s measurement, sorted by their
outcome, are available. We investigate how the number of copies re-
quired to determine the measurement outcome of the king’s men within
desired error bounds 𝜀 and success probability 1−𝛿 scales with system
size when additional quantum resources are (or are not) allowed to be
used. We compare to the exponential advantage of quantum-enhanced
learning found recently for measurements in product bases [6].

[1] Vaidman, Aharonov, Albert, PRL 58, 1385 (1987)
[2] Aharonov, Englert, Z. Naturforsch. 56a, 16 (2001)
[3] Englert, Aharonov, Physics Letters A 84, 1 (2001)
[4] Aravind, Z. Naturforsch. 58a, 682 (2003)
[5] Durt, Int. J. Mod. Phys. B 20, 1742 (2006)
[6] Huang et al., Science 376, 1182 (2022)
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