Freiburg 2024 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
Q: Fachverband Quantenoptik und Photonik
Q 38: Poster IV
Q 38.25: Poster
Mittwoch, 13. März 2024, 17:00–19:00, KG I Foyer
Time-Bin QKD with Wavelength-Division Multiplexing — •Niklas Humberg, Alejandro Sánchez-Postigo, and Carsten Schuck — Departement for Quantum Technology, Münster, Germany
When doing Quantum Key Distribution, there are several different approaches to increase the secret key rate of a quantum channel. One possibility is Wavelength-Division Multiplexing (WDM), where photons of several different wavelengths are sent simultaneously in parallel over the same channel. These time-bin encoded qubits are generated by a narrow-band laser with adjustable wavelength in combination with electro-optic modulators for pulse generation. After transmission through a quantum channel with up to 90 km length, the qubits are demultiplexed and analyzed in the time domain using an 8-channel silicon nitride-on-insulator photonic integrated circuit. We use Mach-Zehnder interferometers with a 200 ps on-chip delay line to measure in complementary bases and enable a maximal key generation rate of up to 2.5 Gbit/s employing NbTiN superconducting nanowire single-photon detectors (SNSPDs) with high timing accuracy. We present simulation results, the QKD setup, and first measurements.
Keywords: Quantum Key Distribution; Wavelength Division Multiplexing