DPG Phi
Verhandlungen
Verhandlungen
DPG

Freiburg 2024 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

Q: Fachverband Quantenoptik und Photonik

Q 38: Poster IV

Q 38.40: Poster

Wednesday, March 13, 2024, 17:00–19:00, KG I Foyer

Criticality-Enhanced Precision in Phase Thermometry — •Mei Yu, H. Chau Nguyen, and Stefan Nimmrichter — University of Siegen, Siegen, Germany

Temperature estimation of interacting quantum many-body systems is both a challenging task and topic of interest in quantum metrology, given that critical behavior at phase transitions can boost the metrological sensitivity. Here we study non-invasive quantum thermometry of a finite, two-dimensional Ising spin lattice based on measuring the non-Markovian dephasing dynamics of a spin probe coupled to the lattice. We demonstrate a strong critical enhancement of the achievable precision in terms of the quantum Fisher information, which depends on the coupling range and the interrogation time. Our numerical simulations are compared to instructive analytic results for the critical scaling of the sensitivity in the Curie-Weiss model of a fully connected lattice and to the mean-field description in the thermodynamic limit, both of which fail to describe the critical spin fluctuations on the lattice the spin probe is sensitive to. Phase metrology could thus help to investigate the critical behaviour of finite many-body systems beyond the validity of mean-field models.

Keywords: Temperature estimation; Criticality; Dephasing; Non-Markovian dynamics; Quantum metrology

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2024 > Freiburg