DPG Phi
Verhandlungen
Verhandlungen
DPG

Freiburg 2024 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 63: Strong Light-Matter Interaction

Q 63.4: Vortrag

Freitag, 15. März 2024, 11:45–12:00, HS 3118

Entangled time-crystal phase in an open quantum light-matter system — •Robert Mattes1, Igor Lesanovsky1,2, and Federico Carollo11Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany — 2School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom

Time-crystals are nonequilibrium many-body phases in which the state of the system dynamically approaches a limit cycle. While these phases are recently in the focus of intensive research, it is still far from clear whether they can host quantum correlations. In fact, mostly classical correlations have been observed so far and time-crystals appear to be effectively classical high-entropy phases. Here, we consider the nonequilibrium behavior of an open quantum light-matter system, realizable in current experiments, which maps onto a paradigmatic time-crystal model after an adiabatic elimination of the light field. The system displays a bistable regime, with coexistent time-crystal and stationary phases, terminating at a tricritical point from which a second-order phase transition line departs. While light and matter are uncorrelated in the stationary phase, the time-crystal phase features bipartite correlations, both of quantum and classical nature. Our work unveils that time-crystal phases in collective open quantum systems can sustain quantum correlations, including entanglement, and are thus more than effectively classical many-body phases.

Keywords: Many-Body Systems; Time-crystal; Nonequilibrium phase transition; Open Quantum Systems

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2024 > Freiburg