Gießen 2024 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
GR: Fachverband Gravitation und Relativitätstheorie
GR 2: Foundations and Alternatives I
GR 2.5: Vortrag
Montag, 11. März 2024, 18:05–18:25, HBR 14: HS 3
Significance of the number space Q and the coordinate system for energy relationships of elementary particles and the cosmos — •Helmut Christian Schmidt — LMU München
For energy relations, a system of 3 objects, each with 3 spatial coordinates (ϕ,r,θ) and the common time, is sufficient. The quantum information from these 10 independent parameters results in a polynomial P(2). A transformation into P(2π) provides the energy ratios.
E.g. neutron:
Ep = (2π)4 + (2π)3 + (2π)2
Ee = −((2π)1 + (2π)0 + (2π)−1)
Emeasuring device =2(2π)−2+2(2π)−4−2(2π)−6
derived from Christoffel symbol
Etime = 6(2π)−8
mneutron/me = Ep + Ee + Emeasurement + Etime = 1838.6836611
measured: 1838.68366173(89) me
Neutrinos correspond to ντ=π, νµ=1, νe=π−1. A photon made of neutrinos and can be viewed as two entangled electrons e− and e+. The charge results in an energy ratio EC.
EC=−π1+2π−1+π−3−2π−5+π−7−π−9 +π−12
mproton = mneutron + EC me = 1836.15267363 me
h GN c5s8/m10 √π4−π2−π−1−π−3 = 0.999991
Further calculations on the planetary system (Sun, Mercury, Venus, Earth, Moon) show the advantages of P(2π) with an outlook H0 and CMB.
Keywords: H0; Neutron mass; Proton mass; ur-objects; planetary system