DPG Phi
Verhandlungen
Verhandlungen
DPG

Gießen 2024 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

GR: Fachverband Gravitation und Relativitätstheorie

GR 2: Foundations and Alternatives I

GR 2.5: Vortrag

Montag, 11. März 2024, 18:05–18:25, HBR 14: HS 3

Significance of the number space Q and the coordinate system for energy relationships of elementary particles and the cosmos — •Helmut Christian Schmidt — LMU München

For energy relations, a system of 3 objects, each with 3 spatial coordinates (ϕ,r,θ) and the common time, is sufficient. The quantum information from these 10 independent parameters results in a polynomial P(2). A transformation into P(2π) provides the energy ratios.

E.g. neutron:

Ep = (2π)4 + (2π)3 + (2π)2

Ee = −((2π)1 + (2π)0 + (2π)−1)

Emeasuring device =2(2π)−2+2(2π)−4−2(2π)−6
derived from Christoffel symbol

Etime = 6(2π)−8

mneutron/me = Ep + Ee + Emeasurement + Etime = 1838.6836611

measured: 1838.68366173(89) me
Neutrinos correspond to ντ=π, νµ=1, νe−1. A photon made of neutrinos and can be viewed as two entangled electrons e and e+. The charge results in an energy ratio EC.

EC=−π1+2π−1−3−2π−5−7−π−9−12

mproton = mneutron + EC me = 1836.15267363 me

h GN c5s8/m10π4−π2−π−1−π−3 = 0.999991

Further calculations on the planetary system (Sun, Mercury, Venus, Earth, Moon) show the advantages of P(2π) with an outlook H0 and CMB.

Keywords: H0; Neutron mass; Proton mass; ur-objects; planetary system

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2024 > Gießen