Bonn 2025 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
Q: Fachverband Quantenoptik und Photonik
Q 10: Quantum Optics and Nuclear Quantum Optics I
Q 10.1: Hauptvortrag
Montag, 10. März 2025, 17:00–17:30, AP-HS
Nuclear quantum memory for hard x-ray photon wave packets — •Sven Velten1,2, Lars Bocklage1,2, Xiwen Zhang3, Kai Schlage1, Anjali Panchwanee1, Sakshath Sadashivaiah4,5, Ilya Sergeev1, Olaf Leupold1, Aleksandr I. Chumakov6, Olga Kocharovskaya3, and Ralf Röhlsberger1,2,5,4,7 — 1Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany — 2The Hamburg Centre for Ultrafast Imaging CUI, Hamburg, Germany — 3Department of Physics and Astronomy and Institute for Quantum Science and Engineering, Texas A&M University, College Station, USA — 4Helmholtz-Institut Jena, Jena, Germany — 5GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany — 6ESRF -The European Synchrotron, Grenoble, France — 7Friedrich-Schiller Universität Jena, Institut für Optik und Quantenelektronik, Jena, Germany
Quantum optics concepts rarely extend to hard X-ray radiation due to the high field strengths needed for coherent control. However, nuclear transitions, notably the 14.41 keV transition of 57Fe, enabled establishing hard X-ray quantum optics due to their ultranarrow linewidths, their high number densities found in solids, and relatively large resonant cross-sections. Aiming to extend this field to quantum information processing, we demonstrated a nuclear quantum memory. By moving multiple resonant absorbers, a Doppler frequency comb is formed capable of storing X-ray photon wave packets on the single-photon level. Conceptually analogous to atomic frequency combs, it constitutes a robust, highly flexible platform for X-ray quantum memories.
Keywords: Mössbauer effect; X-ray quantum optics; Nuclear resonant scattering; Quantum memory