DPG Phi
Verhandlungen
Verhandlungen
DPG

Bonn 2025 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 24: Quantum Computing Implementations (joint session QI/Q)

Q 24.5: Vortrag

Dienstag, 11. März 2025, 15:00–15:15, HS II

Robust Microwave-Driven Quantum Gates in a Cryogenic Surface-Electrode Trap — •Judi Parvizinejad, Sebastian Halama, Giorgio Zarantonello, Celeste Torkzaban, and Christian Ospelkaus — Institute für Quantenoptik, Leibniz University Hannover, Welfengarten 1, 30167 Hannover

A fault-tolerant quantum computer requires a large number of qubits with high gate fidelities, ability to generate entanglement between many qubits, and sufficiently long coherent time. Surface-electrode ion traps [1] have emerged as a promising solution due to their high gate fidelities, long coherence times, and the ability to physically move them around into different zones, which are key requirements for scalable multi-quit operations [1, 4]. Alongside laser-based techniques, microwave-driven gates [2] are promising for advancing fault-tolerant quantum computing. In our cryogenic experiments, 9Be+ ions are confined at a distance of 70 µm above a surface-electrode Paul trap where a strong microwave gradients field generated by an embedded microwave meander is for driving entangling gates [3]. We will present our recent advancements in achieving high-fidelity microwave-driven gate operations, and will share our plan for demonstrating simple quantum error correction algorithms for quantum metrology.

[1] C. Ospelkaus et al., Phys. Rev. Lett. 101, 090502 (2008). [2] C. Ospelkaus et al., Nature 476, 181-184 (2011). [3] M. Carsjens et al., Appl. Phys. B 114, 243 (2014). [4] D. Kielpinski et al., Nature, 417, 709-711 (2002).

Keywords: Trapped-ions; Microwave-driven; Cryogenic

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2025 > Bonn