DPG Phi
Verhandlungen
Verhandlungen
DPG

Bonn 2025 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

QI: Fachverband Quanteninformation

QI 10: Quantum Machine Learning II

QI 10.3: Vortrag

Dienstag, 11. März 2025, 11:30–11:45, HS VIII

sQUlearn - A Python Library for Quantum Machine LearningDavid Kreplin, •Moritz Willmann, Jan Schnabel, Frederic Rapp, Manuel Hagelüken, and Marco Roth — Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany

sQUlearn introduces a user-friendly, NISQ-ready Python library for quantum machine learning (QML), designed for seamless integration with classical machine learning tools like scikit-learn. The library's dual-layer architecture serves both QML researchers and practitioners, enabling efficient prototyping, experimentation, and pipelining. sQUlearn provides a comprehensive toolset that includes both quantum kernel methods and quantum neural networks, along with features like customizable data encoding strategies, automated execution handling, and specialized kernel regularization techniques. By focusing on NISQ-compatibility and end-to-end automation, sQUlearn aims to bridge the gap between current quantum computing capabilities and practical machine learning applications. The library provides substantial flexibility, enabling quick transitions between the underlying quantum frameworks Qiskit and PennyLane, as well as between simulation and running on actual hardware.

Keywords: Quantum Computing; Quantum Machine Learning; Software Library

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2025 > Bonn