A 34: Poster – Atomic Collisions and Ultracold Plasmas

Time: Thursday 17:00-19:00

Location: Tent

A 34.1 Thu 17:00 Tent **Muonic anti-hydrogen formation three-body reaction** — •RENAT SULTANOV — The University of Texas Permian Basin, Odessa, Texas, USA

A few-body formalism is applied for computation of two different threecharge-particle systems. The first system is a collision of a slow antiproton, \bar{p} , with a positronium atom: Ps= (e^+e) - a bound state of an electron and a positron. The second problem is a collision of \bar{p} with a muonic muonium atom, i.e. true muonium - a bound state of two muons one positive and one negative: $Ps_{\mu} = (\mu^{+}\mu^{-})$. The total cross section of the following two reactions: $\bar{p} + (e^{+}e^{-}) \rightarrow \bar{H} + e^{-}$ and $\bar{p} + (\mu^{+}\mu^{-}) \rightarrow \bar{H}_{\mu} + \mu^{-}$, where $\bar{H} = (\bar{p}e^{+})$ is anti-hydrogen and $\bar{H}_{\mu} = (\bar{p}\mu^{+})$ is a muonic anti-hydrogen atom, i.e. a bound state of \bar{p} and μ^{+} , are computed in the framework of a set of coupled twocomponent Faddeev-Hahn-type (FH-type) equations. Results for better known low energy μ^{-} transfer reactions from one hydrogen isotope to another hydrogen isotope in the cycle of muon catalyzed fusion (μ CF) are also computed and will be presented.