Symposium New Avenues in Molecular Alignment and Orientation (SYAO)

jointly organised by

the Molecular Physics Division (MO) and the Atomic Physics Division (A)

Arnaud Rouzée	Sebastian Trippel		
Max Born Institut für Nichtlineare Optik und	Center for Free-Electron Laser Science CFEL,		
Kurzzeitspektroskopie	Deutsches Elektronen-Synchrotron DESY		
Max-Born-Straße 2A	Notkestrasse 85		
12489 Berlin	22607 Hamburg		
rouzee@mbi-berlin.de	sebastian.trippel@cfel.de		

Alignment and orientation of molecules and clusters in the gas phase is a key ingredient of molecular and chemical physics, both for studying steric effects in chemical reactions and for imaging the structure and dynamics directly in the molecular frame. Time-resolved photoelectron spectroscopy in the molecular frame emerged as a promising approach for determining the ultrafast structural dynamics of small molecules. Significant progress was also made toward strong angular confinement of large and complex molecules and clusters, including their laser-field-free alignment to avoid interferences with the molecular dynamics.

Moreover, novel all-optical methods emerged to fully image the alignment dynamics of molecules and novel quantum control schemes have been developed based on molecular alignment for potential quantum simulators at ultracold temperatures.

This symposium gathers experts from experiments and theory and aims to provide an overview of recent developments in this important topic.

Overview of Invited Talks and Sessions

(Lecture hall HS 1+2)

Invited Talks

SYAO 1.1	Fri	14:30-15:00	HS 1+2	Ultralong-range Rydberg molecules: Rotational hybridization, con- trol of alignment and orientation, and Rydberg blockade — •ROSARIO GONZÁLEZ-FÉREZ
SYAO 1.2	Fri	15:00-15:30	${\rm HS}\ 1{+}2$	Quantum control of molecular rotation — •Dominique Sugny
SYAO 1.3	Fri	15:30 - 16:00	${\rm HS}\ 1{+}2$	Strong-Field Ionization and Electron Rescattering Probabilities in
				the Molecular Frame — • JOCHEN MIKOSCH, MARTIN GARRO, NARAYAN
				Kundu, Horst Rottke, Killian Dickson, Varun Makhija, Fed-
				ERICO BRANCHI, FELIX SCHELL, MARK MERO, C P SCHULZ, SERGUEI
				Patchkovskii, Marc Vrakking
SYAO 1.4	Fri	16:00-16:30	$\rm HS~1{+}2$	Coherent rotational control of gas phase molecular dipoles by concerted Terahertz and Near-IR pulses — \bullet SHARLY FLEISCHER

Sessions

SYAO 1.1–1.4	Fri	14:30-16:30	${ m HS}$ 1+2	New Avenues in Molecular Alignment and Orientation
--------------	----------------------	-------------	---------------	--