Göttingen 2025 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
AKPIK: Arbeitskreis Physik, moderne Informationstechnologie und Künstliche Intelligenz
AKPIK 3: Machine Learning in Particle- and Astroparticle Physics
AKPIK 3.5: Vortrag
Donnerstag, 3. April 2025, 17:15–17:30, Theo 0.134
Adaptive Generative Modeling for Accelerated Calorimeter Simulations via Domain Transfer — •Lorenzo Valente1, Fank Gaede2, Gregor Kasieczka1,3, and Anatolii Korol2 — 1Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany — 2Deutsches ElektronenSynchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany — 3Center for Data and Computing in Natural Sciences CDCS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
Simulating particle collider detectors presents significant computational challenges, with current methods struggling to scale with increasingly complex experimental datasets. Deep generative models offer a promising solution for dramatically reducing computational overhead, especially as upcoming particle physics experiments are expected to produce unprecedented volumes of data.
We introduce a novel domain adaptation framework that utilises state-of-the-art deep generative models to generate high-fidelity 3D point-cloud representations of particle showers. Using transfer learning techniques, our approach adapts simulations across diverse electromagnetic calorimeter geometries with exceptional data efficiency, thereby reducing training requirements and eliminating the need for a fixed-grid structure.
Preliminary results demonstrate that our method can achieve high accuracy while significantly reducing data and computational demands, offering a scalable solution for next-generation particle physics simulations.
Keywords: Deep Generative Models; Calorimeter Simulations; Transfer Learning; Diffusion Models; Normalising Flow