DPG Phi
Verhandlungen
Verhandlungen
DPG

Göttingen 2025 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

T: Fachverband Teilchenphysik

T 76: Data, AI, Computing, Electronics VII (Generative AI, MC Generators)

T 76.6: Talk

Thursday, April 3, 2025, 17:30–17:45, VG 2.101

Generative transformers for learning point-cloud simulationsJoschka Birk1, Frank Gaede2, Anna Hallin1, Gregor Kasieczka1, Martina Mozzanica1, and •Henning Rose11Institute for Experimental Physics, Universität Hamburg, Hamburg — 2Deutsches Elektron-Synchrotron DESY, Hamburg

We successfully demonstrate the use of a generative transformer for learning point-cloud simulations of electromagnetic showers in the International Large Detector (ILD) calorimeter. By reusing the architecture and workflow of the OmniJet-α model, this transformer predicts sequences of tokens that represent energy deposits within the calorimeter. This autoregressive approach enables the model to learn the sequence length of the point cloud, supporting a variable-length and realistic shower development. Furthermore, the tokenized representation allows the model to learn the shower geometry without being restricted to a fixed voxel grid.

Keywords: generative transformer; calorimeter simulation; point-cloud

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2025 > Göttingen