HK 1: Structure and Dynamics of Nuclei I

Time: Monday 15:00–16:30

Location: HS 2 Physik

The evolution of the electric dipole (E1) response in various nuclei has been the subject of intense study for decades [1]. The structure of the so-called Pygmy Dipole Resonance, which emerges around and below the neutron separation energy of most medium- to heavy-mass nuclei, is of particular interest [2]. New insights into its origin can be gained through the well-established method of neutron transfer [3]. When combined with state-of-the-art analysis techniques, theoretical calculations, and comparative studies using different probes, the dipole strength can be examined across different nuclides to obtain detailed structural information [4].

In this contribution, a comparison for the tin isotopes, accessible via the $(d, p\gamma)$ -reaction, will be presented and compared to real photon scattering data. Together, these methods highlight the dominance of single-particle excitations at lower energies, while more complex configurations become significant at higher energies.

Supported by the DFG (ZI 510/10-1)

- [1] A. Bracco et al., Prog. Part. Nucl. Phys. 106 (2019) 360
- [2] D. Savran et al., Prog. Part. Nucl. Phys. 70 (2013) 210
- [3] M. Weinert et al., Phys. Rev. Lett. **127** (2021) 242501
- [4] D. Savran et al., Phys. Lett. B 786 (2018) 16

HK 1.2 Mon 15:30 HS 2 Physik

Photoabsorption Cross Sections of Tin and Calcium Isotopes — •MARTIN BAUMANN¹, THOMAS AUMANN^{1,2}, MAIKE BEUSCHLEIN¹, ISABELLE BRANDHERM¹, MEYTAL DUER¹, AMRITA GUPTA¹, PHILLIP IMGRAM¹, ANDREA JEDELE¹, LIANCHENG JI¹, IGOR JUROSEVIC¹, MARCO KNÖSEL¹, NIKOLINA WAGNER¹, ENIS LORENZ¹, HANNES MAYR¹, LEANDRO MILHOMES DA FONSECA¹, NIKHIL MOZUMDAR¹, ANN ROCHELE NETTO¹, OLIVER PAPST¹, THOMAS POHL¹, HEIKO SCHEIT¹, GERHART STEINHILBER¹, SONJA STORCK-DUTINE¹, DMYTRO SYMOCHKO¹, IYABO USMAN³, and PATRICK VAN BEEK¹ — ¹Institut für Kernphysik, TU Darmstadt, Germany — ²GSI Helmholtzzentrum, Darmstadt, Germany — ³University of the Witwatersrand, Johannesburg, South Africa

The photoabsorption setup of the NEPTUN photon tagger at the superconducting linear accelerator S-DALINAC has been used to investigate the photoabsorption cross sections of Sn-112,116,120,124 as well as Ca-40,48 in the region from 5 to 30 MeV using a beam of tagged photons. In this talk the measurement method as well as the current status of the data analysis will be presented.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 279384907 - SFB 1245.

HK 1.3 Mon 15:45 HS 2 Physik Probing the doubly-magic shell closure at ¹³²Sn by Coulomb excitation of neutron-rich ¹³⁰Sn — •MAXIMILIAN DROSTE¹, PE-TER REITER², and THORSTEN KRÖLL² for the IS702-Collaboration — ¹IKP, Universität zu Köln — ²IKP, TU Darmstadt

Excited states of ¹³⁰Sn, the even-even neighbour of doubly-magic ¹³²Sn, were studied by safe Coulomb excitation using the highlyefficient MINIBALL array. The ¹³⁰Sn ions were accelerated to 4.4 MeV/u at the HIE-ISOLDE accelerator and collided with a ²⁰⁶Pb target. Deexciting γ rays from excited states were detected in coincidence with scattered particles. In addition to γ rays from the first 2⁺ state of ¹³⁰Sn, deexcitation from higher-lying states was observed, attributed to an isomeric ¹³⁰Sn $J^{\pi} = 7^{-}$ beam component. A new $B(E2; 0^+_{\rm g.s.} \rightarrow 2^+_{\rm l})$ value is compared to recent theoretical results from state-of-the-art MCSM calculations which differ strongly from previous measurements [1,2]. These calculations also indicate a transition from a slightly oblate to a prolate configuration of the first excited 2^+ state across doubly magic ¹³²Sn. The high statistics of the performed experiment allows for an experimental investigation of the Q_{2+} value. [1] D. Rosiak *et al.* Phys. Rev. Lett. 121, 252501 (2018)

[2] T. Togashi et al. Phys. Rev. Lett. 121, 062501 (2018)

Supported by the German BMBF 05P21PKCI1, 05P24PKCI1, 05P21RDCI2 and European Union*s Horizon Europe Frame- work research and innovation programme under grant agreement no. 101057511

HK 1.4 Mon 16:00 HS 2 Physik

Lifetimes of excited states in ^{116,118}Sn — •SARAH PRILL, ELIAS BINGER, ANNA BOHN, TOBIAS LANGEL, MICHAEL WEINERT, and AN-DREAS ZILGES — University of Cologne, Institute for Nuclear Physics, Germany

The proton-magic tin isotopic chain has the highest number of stable isotopes and is therefore an ideal candidate to study nuclear properties in a wide range of nuclei. Lifetimes of excited states in the femtosecond range have already been determined in Cologne for 112 Sn and 114 Sn [1] using the Coincidence Doppler-Shift Attenuation Method (CDSAM) [2,3]. The study was continued for the nuclei 116 Sn and 118 Sn, using not only inelastic proton scattering but also alpha particles as the beam.

Coincidence data were recorded with the SONIC@HORUS setup [4] at the tandem accelerator of the University of Cologne. Combining particle and γ -ray detection allowed the reconstruction of the reaction kinematics and enabled the analysis of single levels without feeding contributions.

This presentation will show the lifetime results for 116 Sn and 118 Sn and discuss the influence of different beam particles.

Supported by the DFG (ZI 510/9-2).

[1] M. Spieker et al., Phys. Rev. C 97, 054319 (2018).

[2] A. Hennig *et al.*, Nucl. Instr. Meth. A **758**, 171 (2015).

[3] S. Prill *et al.*, Phys. Rev. C **105**, 034319 (2022).

[4] S. G. Pickstone et al., Nucl. Instr. Meth. A 875, 104 (2017).

HK 1.5 Mon 16:15 HS 2 Physik Determination of the energy-resolvable E1- and M1-strength distribution in ⁷⁰Zn — •J. HAUF¹, V. WERNER¹, A. D. AYANGEAKAA^{2,3}, D. BALABANSKI^{4,5}, M. BEUSCHLEIN¹, R. BEYER⁶, S. W. FINCH^{2,7}, A. GUPTA¹, D. GRIBBLE^{2,3}, T. HENSEL⁶, M. HEUMÜLLER¹, F. E. IDOKU^{2,3}, J. ISAAK¹, X. JAMES^{2,3}, R. V. F. JANSSENS^{2,3}, S. R. JOHNSON^{2,3}, A. JUNGHANS⁶, J. KLEEMANN¹, P. KOSEOGLOU¹, T. KOWALEWSKI^{2,3}, A. KUSOGLU⁴, J. LU¹, E. MASHA⁶, C. M. NICKEL¹, O. PAPST¹, M. PICHOTTA⁶, N. PIETRALLA¹, K. PRIFTI¹, K. RÖMER⁶, A. SARACINO^{2,3}, P.-A. SÖDERSTRÖM⁴, K. SCHMIDT⁶, R. SCHWENGNER⁶, A. THEES⁶, S. TURKAT⁶, J. VOGEL¹, A. WAGNER⁶, and A. YADEV⁶ — ¹TU Darmstadt, IKP — ²TUNL — ³University of North Carolina — ⁴ELI-NP — ⁵Horia Hulubei National Institute — ⁶Helmholtz-Zentrum Dresden-Rossendorf — ⁷Duke University

Nuclear resonance fluorescence experiments with bremsstrahlung and quasi-monoenergetic photon beams have been conducted on ^{70}Zn at γELBE and HI γS . The investigation of the most neutron-rich stable zinc isotope aims to achieve a better understanding of nuclear structure phenomena, such as shape coexistence and the Pygmy dipole resonance, at the N=40 harmonic oscillator shell closure. The status of the analysis, including spectra and preliminary results for the E1- and M1-strength distributions, are shown and discussed.

This work is supported by DFG under Project-IDs 499256822*GRK 2891, 279384907*SFB 1245 and by ELI-RO under ELI-RO/RDI/2024 002 and ELI-RO/RDI/2024 007.