HK 40: Structure and Dynamics of Nuclei X

Time: Thursday 14:00–15:30

Location: HS 2 Physik

Group ReportHK 40.1Thu 14:00HS 2 PhysikLifetime measurement in N = 50 isotones to investigate se-
niority conservation in the $\pi g_{9/2}$ orbital — •MARIO LEY¹,
JAN JOLIE¹, PIET VAN ISACKER², ANDREY BLAZHEV¹, ARWIN
ESMAYLZADEH¹, CHRISTOPH FRANSEN¹, LUKAS KNAFLA¹, AARON
PFEIL¹, and JEAN-MARC RÉGIS¹ — ¹Universität zu Köln, Institut
für Kernphysik — ²Grand Accélérateur National d'Ions Lourds, Caen,
France

Excited states in the N=50 semi-magic nuclei 92 Mo, 93 Tc, 94 Ru and 95 Rh were populated using fusion-evaporation reactions at the Cologne FN Tandem accelerator, and their lifetimes were measured with a hybrid setup of HPGe and LaBr detectors using the fast-timing method. The lifetime of the 4_1^+ state in 92 Mo was measured with high precision to derive state-dependent effective charges from the B(E2) values of the yrast band [1]. In 94 Ru the lifetime of the 4_1^+ state was measured with high statistics [2]. The results were compared with theoretical predictions from semiempirical calculations in the single-j orbital for the protons and shell-model calculations using the SR88MHJM interaction in the $\pi(1p_{1/2}, 0g_{9/2})$ model space [2]. Preliminary results of lifetime measurements in 95 Rh will be presented.

Work supported by DFG Grant JO391/18-2 [1] Phys. Rev. C 108, 064313 (2023)

[2] Phys. Rev. C 110, 034320 (2024)

HK 40.2 Thu 14:30 HS 2 Physik **Probing a sudden drop of collectivity at** $^{170,172}W - \bullet K$. E. Ide¹, V. Werner¹, R. Abels², U. Ahmed¹, D. Bittner², T. Biesenbach², A. Blazhev², A. Esmaylzadeh², C. Fransen², J. Jolie², H. Kleis², C. -D. Lakenbrink², M. Ley², H. Mayr¹, M. Müllenmeister², C. M. Nickel¹, R. Novak², A. Pfeil², N. Pietralla¹, J. Roob², F. von Spee², T. Stetz¹, T. Sültenfuss²,

and R. ZIDAROVA¹ — ¹IKP, TU Darmstadt — ²IKP, Uni Köln

Nuclear quadrupole collectivity is identified from enhanced E2 decay rates. The E2 decay strength of a state is inversely proportional to its lifetime. A sudden increase of the E2 strength of the $2_1^+ \rightarrow 0_1^+$ transition from N=96 (¹⁷⁰W) to N=98 (¹⁷²W) in the W isotopic chain is unexpected compared to the neighboring Hf isotopic chain. This discrepancy was previously investigated by lifetime measurements of yrast states of ¹⁷⁰W [1]. Therefore, in this work we investigate yrast B(E2) values in ¹⁷²W to learn about the structural evolution of the yrast band in comparison to ¹⁷⁰W. The experiment was performed at the Cologne 10 MV FN-tandem accelerator facility and used the new CATHEDRAL spectrometer and a plunger device. The fast-timing method and the recoil distance Doppler-shift (RDDS) method are used complementary to determine the lifetimes of yrast states. First results will be presented and discussed together with the previous results on ¹⁷⁰W and will be compared to the confined β -soft (CBS) rotor model.

[1] K. E. Ide *et al.*, LNL report 2019 (2020).

*Supported by the BMBF under Grant No. 05P21RDCI2 and by DFG (GRK 2128, AccelencE).

HK 40.3 Thu 14:45 HS 2 Physik Lifetime measurements in ¹⁹⁸Pt and ²⁰⁰Pt — •Arwin ESMAYLZADEH¹, FRANZISKUS VON SPEE¹, MARIO LEY¹, CHRISTOPH FRANSEN¹, ANDREY BLAZHEV¹, SENURI DANTANARAYANA¹, MAXI-MILIAN DROSTE¹, JULIA FISCHER¹, JAN JOLIE¹, LUKAS KNAFLA¹, CASPER-DAVID LAKENBRINK¹, RICHARD NOVAK¹, AARON PFEIL¹, and KOSUKE NOMURA^{2,3} — ¹Universität zu Köln, Institut für Kernphysik — ²Department of Physics, Hokkaido University, Sapporo 060-0810, Japan — ³Nuclear Reaction Data Center, Hokkaido University, Sapporo 060-0810, Japan

Eight lifetimes of low-lying states in 198 Pt and 200 Pt were determined

using the fast-timing and the recoil distance Doppler shift methods at the Cologne CATHEDRAL spectrometer. Low-lying states were populated in the ¹⁹⁸Pt(¹⁸O, ¹⁸O)¹⁹⁸Pt* inelastic scattering and in the ¹⁹⁸Pt(¹⁸O, ¹⁶O)²⁰⁰Pt two-neutron transfer reaction, respectively. The beam was provided by the Cologne FN Tandem accelerator. In addition, four new candidates for states, five new transitions in ¹⁹⁸Pt and one new potential transition in ²⁰⁰Pt could be observed and placed in the level scheme. The newly obtained results will be discussed in the context of the tungsten-osmium-platinum region around mass $A\approx$ 190. This region is known to exhibit different phenomena like a prolate-tooblate phase transitions, but also characteristics of γ -soft nuclei. The results will be compared to mapped interacting boson model with input from the microscopic self-consistent mean-field calculation using a Gogny interaction [1].

[1] K. Nomura et al., Phys. Rev. C 84, 054316 (2011)

HK 40.4 Thu 15:00 HS 2 Physik **Coulomb excitation in** ^{185g,m}Hg — •HANNAH KLEIS¹, PETER REITER¹, LIAM GAFFNEY², JANNE PAKARINEN³, and KATARZYNA WRZOSEK-LIPSKA⁴ for the IS699-Collaboration — ¹IKP, University of Cologne, Germany — ²University of Liverpool, UK — ³University of Jyväskylä, Finland — ⁴HIL, University of Warsaw, Poland

Shape coexistence in the neutron-deficient lead region around N \approx 104 has been discovered in different nuclei especially in the mercury isotopes, where a staggering effect was found between even- and odd-mass nuclei using charge radii measurements [1,2]. In addition the study of the even-even 182,184,186,188 Hg isotopes showed a mixing of weakly deformed oblate and more deformed prolate configurations which coexists at low excitation energies [3]. To investigate collective behavior of low-lying states on top of the $(1/2^-)$ ground-state in 185g Hg and the $(13/2^+)$ isomeric state in ^{185m}Hg, a Coulomb excitation experiment was performed at HIE-ISOLDE. The ^{185g,m}Hg beams were accelerated onto 120 Sn and 48 Ti targets with an energy of 4 MeV/u. The emitted γ rays were detected utilizing the Miniball array in coincident to the scattered particles measured in the DSSSD detector. First results yield the discovery of the signature partner band of the ground-state band which was observed up to spin values of $25/2^{-}$. Supported by BMBF Projects 05P21KCI1, 05P24KCI1. This project has received funding from the European Union's Horizon Research and Innovation programme under Grant Agreement No. 101057511. [1] B. Marsh et al., Nature Physics 14, 1163 (2018) [2] J. Bonn et al., Z Phys A 276(3), 203 (1976) [3] K. Wrzosek-Lipska et al., EPJ A 55:130 (2019)

HK 40.5 Thu 15:15 HS 2 Physik Lifetime measurements in ²⁰⁸Po using the ORANGEspectrometer and LaBr₃(Ce) detectors — •DANIA AL DAAS, ANDREY ANDREY, JEAN-MARC REGIS, NIGEL WARR, and JAN JOLIE — IKP, University of Cologne, Germany

The iron-free high-efficiency electron-spectrometer ORANGE at the IKP University of Cologne was updated recently [1]. Using the 10 MV FN-tandem accelerator, 208Po was produced with the reaction $^{209}\text{Bi}(\text{p}, 2\text{n}\gamma)$ to measure the lifetimes of the 2^+_1 , 4^+_1 and 6^+_1 states using $e^- \gamma$ and $\gamma - \gamma$ coincidence measurements. The resulting lifetimes were compared to known values to ascertain the state of the updated spectrometer. For the mono-energetic electrons, the magnetic field of the ORANGE was varied to select different electron energies for detection by a plastic scintillator counter. The γ -rays were measured by a HPGe and four LaBr₃(Ce) detectors, the latter having a fast electronic response that allows for a precise determination of the lifetime of excited states. The resulting lifetimes of all three states have a higher precision than the known lifetimes, while agreeing within the error margin [2,3].

[1] A. Harter et al., Physical Review C, 106:024326, (2022);

- [2] D. Kalaydjieva et al., Physical Review C, 104:024311, (2021) ;
- [3] V. Rahkonen et al., Z. Phys. A 322, 333-348, (1985) .