Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 20: Many-body Quantum Dynamics II (joint session DY/TT)
DY 20.11: Vortrag
Mittwoch, 19. März 2025, 12:15–12:30, H37
Efficient computation of cumulant evolution and full counting statistics: application to infinite temperature quantum spin chains — •Angelo Valli1,2, Cătălin Pascu Moca2,3, Miklós Antal Werner1,4, Márton Kormos1,2, Žiga Krajnik5, and Tomaž Prosen6 — 1Budapest University of Technology and Economics, Muegyetem rkp. 3., 1111 Budapest, Hungary — 2HUN-REN BME Quantum Dynamics and Correlations Research Group — 3University of Oradea, 410087, Oradea, Romania — 4HUN-REN Wigner Research Centre for Physics, P.O. Box 49, 1525 Budapest, Hungary — 5New York University, 726 Broadway, New York, NY 10003, USA — 6University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
We propose a numerical method to efficiently compute quantum generating functions (QGF) for a wide class of observables in one-dimensional quantum systems at high temperature. We obtain high-accuracy estimates for the cumulants and reconstruct full counting statistics from the QGF. We demonstrate its potential on spin S=1/2 anisotropic Heisenberg chain, where we can reach time scales hitherto inaccessible to state-of-the-art classical and quantum simulations. Our results are in excellent agreement with a recent Google Quantum AI experiment [2] and challenge the conjecture of the Kardar-Parisi-Zhang universality for isotropic integrable quantum spin chains.
[1] A. Valli et al. arXiv:2409.14442 (2024)
[2] E. Rozenberg et al. Science 384, 48-53 (2024)
Keywords: full counting statistics; non-equilibrium dynamics; integrable quantum spin chains; anomalous diffusion; Kardar-Parisi-Zhang universality