|
09:30 |
DY 20.1 |
The Sound of Entanglement — •Benjamin Orthner, Clemens Wenger, Johannes Kofler, Richard Küng, Enar de Dios Rodríguez, Martin Ringbauer, Alexander Ploier, and Philipp Haslinger
|
|
|
|
09:45 |
DY 20.2 |
A Solvable Model for Full Eigenstate Thermalization — •Felix Fritzsch and Pieter W. Claeys
|
|
|
|
10:00 |
DY 20.3 |
Scrutinizing the Mori memory function for transport scenarios — •Scott Daniel Linz, Jiaozi Wang, Robin Steinigeweg, and Jochen Gemmer
|
|
|
|
10:15 |
DY 20.4 |
Long-time Freeness in the Kicked Top — •Elisa Vallini and Silvia Pappalardi
|
|
|
|
10:30 |
DY 20.5 |
Periodically and aperiodically Thue-Morse driven long-range systems: from dynamical localization to slow dynamics — •VATSANA TIWARI
|
|
|
|
10:45 |
DY 20.6 |
Symmetry-Resolved Out-of-Time-Order Correlators with Projected Matrix Product Operators — •Martina Gisti, David Luitz, and Maxime Debertolis
|
|
|
|
11:00 |
DY 20.7 |
Revealing ultrafast phonon mediated inter-valley scattering through transient absorption and high harmonic spectroscopies — •Kevin Lively, Shunsuke Sato, Guillermo Albareda, Angel Rubio, and Aaron Kelly
|
|
|
|
11:15 |
|
15 min. break
|
|
|
|
11:30 |
DY 20.8 |
Chiral basis for qubits and decay of spin-helix states — •Frank Göhmann
|
|
|
|
11:45 |
DY 20.9 |
Towards the chaotic melting at low energies in large systems — •Mathias Steinhuber, Jonas Rigo, Juan Diego Urbina, Klaus Richter, and Markus Schmitt
|
|
|
|
12:00 |
DY 20.10 |
Period n-tupling in driven two level systems — •Dhruv Deshmukh and Joachim Ankerhold
|
|
|
|
12:15 |
DY 20.11 |
Efficient computation of cumulant evolution and full counting statistics: application to infinite temperature quantum spin chains — •Angelo Valli, Cătălin Pascu Moca, Miklós Antal Werner, Márton Kormos, Žiga Krajnik, and Tomaž Prosen
|
|
|
|
12:30 |
DY 20.12 |
Machine learning approach to study the properties of ground and excited states in the 1D Bose-Hubbard model — •Yilun Gao, Alberto Rodríguez González, and Rudolf A. Römer
|
|
|
|
12:45 |
DY 20.13 |
Entanglement Transitions in Quantum Games through Reinforcement Learning — •Giovanni Cemin, Marin Bukov, and Markus Schmitt
|
|
|