|
09:30 |
DY 33.1 |
Learning Mechanisms of Neural Scaling Laws — •Konstantin Nikolaou, Samuel Tovey, Sven Krippendorf, and Christian Holm
|
|
|
|
09:45 |
DY 33.2 |
Finite integration time drives optimal dynamic range into subcritical regime — Sahel Azizpour, Viola Priesemann, •Johannes Zierenberg, and Anna Levina
|
|
|
|
10:00 |
DY 33.3 |
Self-Organizing Global Computation from Local Objective Functions Based on Partial Information Decomposition — Andreas C. Schneider, •Valentin Neuhaus, David A. Ehrlich, Abdullah Makkeh, Alexander S. Ecker, Viola Priesemann, and Michael Wibral
|
|
|
|
10:15 |
DY 33.4 |
Explaining Near-Zero Hessian Eigenvalues Through Approximate Symmetries in Neural Networks — •Marcel Kühn and Bernd Rosenow
|
|
|
|
10:30 |
DY 33.5 |
Efficient mapping of phase diagrams with conditional Boltzmann Generators — •Maximilian Schebek, Michele Invernizzi, Frank Noé, and Jutta Rogal
|
|
|
|
10:45 |
DY 33.6 |
Sampling rare events with neural networks: Machine learning the density of states — •Moritz Riedel, Johannes Zierenberg, and Martin Weigel
|
|
|
|
11:00 |
DY 33.7 |
stable diffusion for microstructure: from microstructural properties to 2D-to-3D reconstruction — •Yixuan Zhang, Teng Long, Mian Dai, and Hongbin Zhang
|
|
|
|
11:15 |
|
15 min. break
|
|
|
|
11:30 |
DY 33.8 |
Machine learning for prediction of dynamical clustering in granular gases — •Sai Preetham Sata, Dmitry Puzyrev, and Ralf Stannarius
|
|
|
|
11:45 |
DY 33.9 |
Automated construction of complex reaction networks — •Weiqi Wang, Xiangyue Liu, and Jesús Pérez Ríos
|
|
|
|
12:00 |
DY 33.10 |
Data-Driven Sparse Identification with Adaptive Function Bases — •Gianmarco Ducci, Maryke Kouyate, Karsten Reuter, and Christoph Scheurer
|
|
|
|
12:15 |
DY 33.11 |
Kalman filter enhanced adversarial Bayesian optimization for active sampling in inelastic neutron scattering — Yixuan Zhang, •Nihad Abuawwad, Samir Lounis, and Hongbin Zhang
|
|
|
|
12:30 |
DY 33.12 |
Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning — •Kisung Kang, Thomas A. R. Purcell, Christian Carbogno, and Matthias Scheffler
|
|
|
|
12:45 |
DY 33.13 |
Molecular Dynamics of Endohedral CaX@C60 Fullerenes: Reproducing Correlated Movement Features Using Machine Learning Applications — •Mihaela Cosinschi, Amanda Teodora Preda, Calin Andrei Pantis Simut, Nicolae Filipoiu, Ioan Ghitiu, Mihnea Alexandru Dulea, Andrei Manolescu, and George Alexandru Nemnes
|
|
|