Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 33: Machine Learning in Dynamics and Statistical Physics I

Donnerstag, 20. März 2025, 09:30–13:00, H47

09:30 DY 33.1 Learning Mechanisms of Neural Scaling Laws — •Konstantin Nikolaou, Samuel Tovey, Sven Krippendorf, and Christian Holm
09:45 DY 33.2 Finite integration time drives optimal dynamic range into subcritical regimeSahel Azizpour, Viola Priesemann, •Johannes Zierenberg, and Anna Levina
10:00 DY 33.3 Self-Organizing Global Computation from Local Objective Functions Based on Partial Information DecompositionAndreas C. Schneider, •Valentin Neuhaus, David A. Ehrlich, Abdullah Makkeh, Alexander S. Ecker, Viola Priesemann, and Michael Wibral
10:15 DY 33.4 Explaining Near-Zero Hessian Eigenvalues Through Approximate Symmetries in Neural Networks — •Marcel Kühn and Bernd Rosenow
10:30 DY 33.5 Efficient mapping of phase diagrams with conditional Boltzmann Generators — •Maximilian Schebek, Michele Invernizzi, Frank Noé, and Jutta Rogal
10:45 DY 33.6 Sampling rare events with neural networks: Machine learning the density of states — •Moritz Riedel, Johannes Zierenberg, and Martin Weigel
11:00 DY 33.7 stable diffusion for microstructure: from microstructural properties to 2D-to-3D reconstruction — •Yixuan Zhang, Teng Long, Mian Dai, and Hongbin Zhang
  11:15 15 min. break
11:30 DY 33.8 Machine learning for prediction of dynamical clustering in granular gases — •Sai Preetham Sata, Dmitry Puzyrev, and Ralf Stannarius
11:45 DY 33.9 Automated construction of complex reaction networks — •Weiqi Wang, Xiangyue Liu, and Jesús Pérez Ríos
12:00 DY 33.10 Data-Driven Sparse Identification with Adaptive Function Bases — •Gianmarco Ducci, Maryke Kouyate, Karsten Reuter, and Christoph Scheurer
12:15 DY 33.11 Kalman filter enhanced adversarial Bayesian optimization for active sampling in inelastic neutron scatteringYixuan Zhang, •Nihad Abuawwad, Samir Lounis, and Hongbin Zhang
12:30 DY 33.12 Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning — •Kisung Kang, Thomas A. R. Purcell, Christian Carbogno, and Matthias Scheffler
12:45 DY 33.13 Molecular Dynamics of Endohedral CaX@C60 Fullerenes: Reproducing Correlated Movement Features Using Machine Learning Applications — •Mihaela Cosinschi, Amanda Teodora Preda, Calin Andrei Pantis Simut, Nicolae Filipoiu, Ioan Ghitiu, Mihnea Alexandru Dulea, Andrei Manolescu, and George Alexandru Nemnes
100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2025 > Regensburg