DY 39: Machine Learning in Dynamics and Statistical Physics II
Donnerstag, 20. März 2025, 15:00–16:30, H47
|
15:00 |
DY 39.1 |
Fast and energy-efficient reservoir computing using a resonant-tunneling diode — •Osamah Sufyan, Antonio Hurtado, and Kathy Lüdge
|
|
|
|
15:15 |
DY 39.2 |
Tailored minimal reservoir computing: Connecting nonlinearities in the input data with nonlinearities in the reservoir — Davide Prosperino, Haochun Ma, Vincent Groß, and •Christoph Räth
|
|
|
|
15:30 |
DY 39.3 |
Physical Reservoir Computing with Ferroelectric Oxides — •Atreya Majumdar, Yan Meng Chong, Dennis Meier, and Karin Everschor-Sitte
|
|
|
|
15:45 |
DY 39.4 |
Describing heat transport in crystalline polymers in real and reciprocal space — Lukas Reicht, Lukas Legenstein, Sandro Wieser, and •Egbert Zojer
|
|
|
|
16:00 |
DY 39.5 |
Reinforcement learning for autonomous navigation of active particles in complex flow fields — •Diptabrata Paul and Frank Cichos
|
|
|
|
16:15 |
DY 39.6 |
Predictability Analysis of Discrete Time-Series Data with a Hamiltonian-Based Filter-Projection Approach — •Henrik Kiefer and Roland Netz
|
|
|