Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 8: Focus Session: Nonlinear Dynamics and Stochastic Processes – Advances in Theory and Applications II
DY 8.3: Vortrag
Montag, 17. März 2025, 15:45–16:00, H43
Back to the future: Fermi--Pasta--Ulam--Tsingou recurrence in a time-delayed system — •Jonas Mayer Martins1, Elias Koch1, Julien Javaloyes2, and Svetlana V. Gurevich1 — 1Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9 and Center for Nonlinear Science (CeNoS), University of Münster, Corrensstrasse 2, 48149 Münster, Germany — 2Departament de Física and IAC-3, Universitat de les Illes Balears, C/ Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
We demonstrate Fermi--Pasta--Ulam--Tsingou (FPUT) recurrence, a surprising quasi-periodicity of certain spatially extended systems, in a time-delayed system. Although the bi-Riccati system that we study is not integrable, we find in the long-delay limit that its normal form is a partial differential equation approximating the integrable Korteweg--de Vries (KdV) equation, prominently known to exhibit FPUT recurrence. Our results underscore the analogy between spatially extended and time-delayed systems.
Keywords: delay; integrability; normal form; nonlinear dynamics; FPUT