DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2025 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

HL: Fachverband Halbleiterphysik

HL 29: Poster II

HL 29.74: Poster

Tuesday, March 18, 2025, 18:00–20:00, P1

Experimental time-bin encoding quantum key distribution with telecom semiconductor quantum dot — •Jipeng Wang1, Jingzhong Yang1, Joscha Hanel1, Zenghui Jiang1, Vincent Rehlinger1, Raphael Joos2, Stephanie Bauer2, Sascha Kolatschek2, Eddy Rugeramigabo1, Michael Jetter2, Simone Portalupi2, Michael Zopf1,3, Peter Michler2, and Fei Ding1,31Leibniz Universität Hannover, Institut für Festkörperphysik, Appelstraße 2, 30167 Hannover — 2Institut für Halbleiteroptik und Funktionelle Grenzflächen, Center for Integrated Quantum Science and Technology (IQST) and SCoPE, University of Stuttgart, Stuttgart, Germany. — 3Laboratorium für Nano-und Quantenengineering, Leibniz Universität Hannover, Schneiderberg 39, 30167 Hannover, Germany

Quantum Key Distribution (QKD) enables secure data transmission via quantum-generated secret keys. Semiconductor quantum dots (QDs) are promising light sources for high-speed quantum networks due to their deterministic single-photon emission. However, polarisation stability in fibre networks is often disrupted by environmental factors. Here, we demonstrate a QKD experiment using time-bin qubits derived from polarised photons emitted by a QD in the telecommunication C-band. A 16-bit pseudo-random sequence is encoded via a Sagnac-loop interferometer and decoded using an unbalanced Mach-Zehnder interferometer after transmission through 80 km of fibre. This study highlights QDs' potential for scalable, robust quantum networks.

Keywords: quantum dot; quantum key distribution; quantum communication; time-bin; C-band

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2025 > Regensburg