Regensburg 2025 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
HL: Fachverband Halbleiterphysik
HL 3: Focus Session: Machine Learning of semiconductor properties and spectra
Montag, 17. März 2025, 09:30–13:00, H17
The focus session highlights recent advances of machine learning concepts for the characterization of semiconductors. It particularly spotlights ML-driven advances in the prediction of key semiconductor properties, such as band gaps, dielectric constants and optical spectra, which are critical for the design of next-generation energy materials.
The focus session is organized by Erich Runge (TU Ilmenau).
09:30 | HL 3.1 | Hauptvortrag: Alexandria Database - Improving machine-learning models in materials science through large datasets — •Jonathan Schmidt, Tiago Cerqueira, Aldo Romero, Silvana Botti, and Miguel Marques | |
10:00 | HL 3.2 | Hauptvortrag: Generative Models on the Rise - Which one shall I pick for my Inverse Design Problem? — •Hanna Türk, Elisabetta Landini, Christian Kunkel, Patricia König, Christoph Scheurer, Karsten Reuter, and Johannes Margraf | |
10:30 | HL 3.3 | Hauptvortrag: Machine-learning accelerated prediction of two-dimensional conventional superconductors — Thalis H. B. da Silva, Théo Cavignac, Tiago F. T. Cerqueira, •Haichen Wang, and Miguel A. L. Marques | |
11:00 | 15 min. break | ||
11:15 | HL 3.4 | Hauptvortrag: Machine Learning for Design, Understanding, and Discovery of (Semiconducting) Materials — •Pascal Friederich | |
11:45 | HL 3.5 | Hauptvortrag: OptiMate: Artificial intelligence for optical spectra — •Malte Grunert and Max Großmann | |
12:15 | HL 3.6 | Mechanical Properties of Hybrid Perovskites study using explainable Machine Learning — •Yuxuan Yao, Dan Han, and Harald Oberhofer | |
12:30 | HL 3.7 | Exploring Strongly Anharmonic Thermal Insulators with Machine-Learned Interatomic Potential using an Active Learning Scheme — •Shuo Zhao, Kisung Kang, and Matthias Scheffler | |
12:45 | HL 3.8 | Learning an effective Hamiltonian for large-scale electronic-structure calculations — •Martin Schwade and David A. Egger | |