Regensburg 2025 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
MA: Fachverband Magnetismus
MA 29: Skyrmions II
MA 29.12: Vortrag
Mittwoch, 19. März 2025, 18:00–18:15, H20
RC circuit based on magnetic skyrmions — •Ismael Ribeiro de Assis, Ingrid Mertig, and Börge Göbel — Institut für Physik, Martin-Luther-Universität Halle-Wittenberg
Skyrmions are nano-sized magnetic whirls attractive for spintronic applications due to their innate stability. They can emulate the characteristic behavior of various spintronic and electronic devices such as spin-torque nano-oscillators, artificial neurons and synapses, logic devices, diodes, and ratchets. Here, we show that skyrmions can emulate the physics of an RC circuit*the fundamental electric circuit composed of a resistor and a capacitor*on the nanosecond time scale. The equation of motion of a current-driven skyrmion in a quadratic energy landscape is mathematically equivalent to the differential equation characterizing an RC circuit: the applied current resembles the applied input voltage, and the skyrmion position resembles the output voltage at the capacitor. These predictions are confirmed via micromagnetic simulations. We show that such a skyrmion system reproduces the characteristic exponential voltage decay upon charging and discharging the capacitor under constant input. Furthermore, it mimics the low-pass filter behavior of RC circuits by filtering high-frequencies in periodic input signals. Since RC circuits are mathematically equivalent to the Leaky-Integrate-Fire (LIF) model widely used to describe biological neurons, our device concept can also be regarded as a perfect artificial LIF neuron.
Keywords: skyrmions; neuromorphic computing; racetrack memory; skyrmion dynamics