DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2025 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MM: Fachverband Metall- und Materialphysik

MM 3: Data-driven Materials Science: Big Data and Worksflows

Montag, 17. März 2025, 10:15–13:00, H10

Machine Learning, Potential Development

10:15 MM 3.1 Benchmarking DFT Functionals at Finite Temperature with ASSYST and MLIPs — •Marvin Poul and Jörg Neugebauer
10:30 MM 3.2 Assessing the role of physical constraints in machine learning potentials — •Marcel F. Langer, Sergey N. Pozdnyakov, Filippo Bigi, and Michele Ceriotti
10:45 MM 3.3 Fast and flexible range-separated models for atomistic machine learning — •Philip Loche, Marcel F. Langer, and Michele Ceriotti
11:00 MM 3.4 Beyond Numerical Hessians: Applications for Higher Order Derivatives in Machine Learning Interatomic Potentials — •Nils Gönnheimer, Karsten Reuter, and Johannes T. Margraf
11:15 MM 3.5 Diversity-Driven Active Learning of Interatomic Potentials for Reaction Network Exploration — •Francesco Cannizzaro, King Chun Lai, Patricia Poths, Sebastian Matera, Vanessa J. Bukas, and Karsten Reuter
  11:30 15 min. break
11:45 MM 3.6 Accelerating Materials Exploration with Active Machine Learning: Integrating SISSO with FHI-aimsYi Yao, Lucas Foppa, Akhil Sugathan Nair, Andrei Sobolev, •Konstantin Lion, Sebastian Kokott, and Matthias Scheffler
12:00 MM 3.7 Data-driven design of mechanically hard soft magnetic high-entropy alloys — •Mian Dai, Yixuan Zhang, Xiaoqing Li, Stephan Schönecker, Liuliu Han, Ruiwen Xie, Chen Shen, and Hongbin Zhang
12:15 MM 3.8 Autonomous optimization of coin-cell batteries and thin-film growth — •Edan Bainglass, Peter Kraus, Francisco Ramirez, Enea Svaluto-Ferro, Loris Ercole, Benjamin Kunz, Sebastiaan Huber, Nukorn Plainpan, Nikita Shepelin, Nicola Marzari, Corsin Battaglia, and Giovanni Pizzi
12:30 MM 3.9 Learning Disorder in Generative Materials Discovery - Bridging Prediction and Experiment — •Konstantin Jakob, Aron Walsh, Karsten Reuter, and Johannes T. Margraf
12:45 MM 3.10 Materials-Discovery Workflows Guided by Symbolic Regression: Identifying Stable Oxides for Catalytic Applications — •Akhil S. Nair, Lucas Foppa, and Matthias Scheffler
100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2025 > Regensburg