Regensburg 2025 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
TT: Fachverband Tiefe Temperaturen
TT 22: Many-body Systems: Equilibration, Chaos, and Localization (joint session DY/TT)
TT 22.2: Vortrag
Dienstag, 18. März 2025, 14:15–14:30, H37
Escaping the Krylov space during reorthogonalization — •Max Pieper, Jannis Eckseler, and Jürgen Schnack — Universität Bielefeld
Krylov complexity [1] is often used as a measure of complexity in quantum many-body-systems. During its calculation, the Lanzcos algorithm is used to construct an operator basis. Due to the poor orthogonality of the resulting basis reorthogonalization is often employed [2]. We investigate how using reorthogonalization causes the Lanczos algorithm to accumulate non-Krylov basis elements. We suspect this to negatively affect the Krylov algorithm.
[1] D. E. Parker et al. Phys. Rev. X 9, 041017 (2019)
[2] E. Rabinovici et al. JHEP 06, 062 (2021)
Keywords: Krylov complexity; Krylov space; Lanzcos algorithm; Reorthogonalization